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Performing computations on conventional von Neumann computing systems results in a 
significant amount of data being moved back and forth between the physically separated 
memory and processing units. This costs time and energy, and constitutes an inherent 
performance bottleneck. In-memory computing is a novel non-von Neumann approach where 
certain computational tasks are performed in the memory itself. This is enabled by the physical 
attributes and state dynamics of memory devices, in particular resistance-based non-volatile 
memory technology. Several computational tasks such as logical operations, arithmetic 
operations and even certain machine learning tasks can be implemented in such a 
computational memory unit. In this paper we will first introduce the general notion of in-
memory computing and then focus on mixed-precision deep learning training with in-memory 
computing. The efficacy of this new approach will be demonstrated by training the MNIST 
multilayer perceptron network achieving high accuracy. Moreover, we will show how the 
precision of in-memory computing can be further improved through architectural and device-
level innovations. Finally, we will present system aspects, such as high-level system 
architecture, including core-to-core interconnect technologies, and high-level ideas and 
concepts of the software stack.  

1 Introduction 
Recent years have witnessed a tremendous explosion of data, 
which continues unabatedly: it is estimated that the digital 
universe is growing at a rate of about 60% per year. This 
abundance of data significantly improves our understanding of 
today's incredibly complex economies and societies. Moreover, 
it ushers in a new era of computing, viz. the cognitive or AI era, 
in which data is considered a new natural resource.  

In today’s computing systems based on the conventional von 
Neumann architecture, there are distinct memory and processing 
units. Performing computations results in a significant amount 
of data being moved back and forth between the physically 
separated memory and processing units. This costs time and 
energy, and constitutes an inherent performance bottleneck. 
Moreover, the memory unit itself, which typically comprises 
dynamic random-access memory (DRAM) for storing the 
information in the charge state of a capacitor, is volatile and 
consumes a large amount of energy. Thus, the classical von 
Neumann computing architecture poses serious challenges in 
terms of area and power consumption for tackling the high 
computational complexity and big data volume required by AI 
workloads. This has triggered research efforts to unravel and 
understand the highly efficient computational paradigm of the 
human brain, with the aim of creating brain-inspired computing 
systems. IBM, with its fully digital TrueNorth chip architecture, 
reached a key milestone in mimicking neural networks “in 
silico” [1]. In addition to fully digital approaches, analog and 
hybrid architectures are also being investigated.  

Most recently, post-silicon nanoelectronic devices with 
resistive memory (memristive) properties are also finding 
applications beyond the realm of memory. It is becoming 

increasingly clear that for AI application, we need to transition 
to computing architectures in which memory and logic coexist 
in some form. Brain-inspired neuromorphic computing and the 
fascinating new area of in-memory computing or computational 
memory are two key non-von Neumann approaches being 
researched [2]. A critical requirement in these novel computing 
paradigms is a very-high-density, low-power, variable-state, 
programmable and non-volatile nanoscale memory device. 
Phase-change-memory (PCM) [3] based on chalcogenide phase-
change materials, such as Ge2Sb2Te5, is technologically one of 
the most mature memristive technologies and as such is well 
suited to address this need, owing to its multi-level storage 
capability and potential scalability. In in-memory computing, 
the physics of the nanoscale memory devices – as well as the 
organization of such devices in crossbar arrays – are exploited 
to perform certain computational tasks within the memory unit 
(see Figure 1) [4-9]. The essential idea is to treat memory not as 
a passive storage entity, but to exploit the physical attributes of 
the memory devices and thus realize computation exactly at the 
place where the data are stored. Several computational tasks 
such as logical operations, [10,11] arithmetic operations [12,13] 
and even certain machine learning tasks [14] can be 
implemented in such a computational memory unit. Specifically, 
crossbar arrays of PCM or other memristive devices can be used 
to store a matrix and perform analog matrix-vector 
multiplications at constant O(1) time complexity without 
intermediate movement of data. This capability is well suited for 
solving complex optimization problems, such as compressed 
sensing and recovery [15,16]. For example, for a signal of size 
N, this method achieves a potential O(N)-fold complexity 
reduction compared with standard software for compressed 
sensing and recovery approaches. The same concept can also be 
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used to accelerate deep learning inference [9,17,18]. 

Besides the ability to perform logical operations, arithmetic 
operations and matrix–vector multiplications, another crucial 
property is that of realizing higher-level computational 
primitives by exploiting the rich dynamic behavior of the 
constituent devices. For example, the dynamic evolution of the 
conductance levels of those devices upon application of 
electrical signals can be used to perform in-place computing. 
Specifically, an algorithm to detect the temporal correlations 
between event-based data streams using a PCM-based 
computational memory has been presented in [14]. The 
reduction in complexity is from O(N) to O(klog(N)), where k is 
a small constant and N is the number of data streams. For 
example, it was shown that for 10 million data streams a 200x 
speed-up over 4 P100 GPUs could be achieved. Finally, in [19] 
it was shown that a feedback circuit in conjunction with a cross-
point resistive memory can solve algebraic problems in one 
step. 

Although these machine-learning applications are impressive, 
in order to reach the numerical accuracy typically required for 
data analytics and scientific computing, limitations arising from 
device variability and non-ideal device characteristics need to be 
addressed. Thus, the concept of mixed-precision in-memory 
computing – which combines a conventional high-precision von 
Neumann machine with a computational memory unit – was 
introduced in [20]. In this hybrid system, the computational 
memory unit performs the bulk of a computational task, whereas 
the von Neumann machine iteratively improves or refines the 
accuracy of the solution. The system therefore benefits from 
both the high precision of digital computing and the 
energy/areal efficiency of in-memory computing. The efficacy 
of this approach was experimentally demonstrated by accurately 
solving systems of linear equations [20].  

The application of the mixed-precision in-memory computing 
framework to deep neural networks, which is the main focus of 
this paper, was proposed in [21-23]. This architecture combines 
a computational memory unit for storing the synaptic weights 
with a digital processing unit and an additional memory unit that 

stores the accumulated weight updates in high precision. 
Specifically, the expensive matrix-vector multiplication 
operations for forward and backward passes can be performed in 
place using a non-von Neumann unit, whereas the weight 
updates — which are also expensive — are accumulated in high 
precision in the digital unit. Subsequently, the weights are 
updated in place by exploiting the accumulative behavior. We 
will show that the new architecture delivers classification 
accuracies comparable to those of floating-point 
implementations without being constrained by challenges 
associated with the non-ideal weight update characteristics of 
emerging resistive memories.  

The rest of the paper is organized as follows. In Section 2 we 
will detail the mixed-precision architecture and how it works. 
Moreover, we will also briefly describe the advantages of the 
approach as already demonstrated in [21,22], i.e., robustness to 
stochasticity, nonlinearity, asymmetry, etc.. In Section 3 we will 
first give a brief presentation of PCM technology and the 
experimental platform and then briefly present the experimental 
characterization result focusing on the quantitative match 
between model and experiment. The main theme of this section 
will be evaluating the training efficacy of the mixed-precision 
architecture under realistic PCM behavior. Section 4 will focus 
on improvements in performance, accuracy and reliability by 
introducing multi-PCM-cell synapses. We will also discuss the 
importance of the concept of projected memory to address the 
critical issue of sensitivity temperature variations and also to 
increase the precision of matrix-vector multiplication. Section 5 
will focus on system aspects, such as high-level system 
architecture, including core-to-core interconnect technologies, 
and high-level ideas and concepts of the software stack. The last 
section will be the conclusions, summarizing the main results of 
the paper and also providing a brief outlook.  

2 Mixed-precision architecture for deep learning 
Deep neural networks (DNN) have many layers of neurons 
interconnected using adaptable weights. The DNNs are trained 
to perform a desired task traditionally via a supervised learning 
algorithm called back-propagation. The training involves three 
stages. During forward propagation, training data is propagated 
through the layers of neurons and the weighted inter-
connections to determine the network response. During 
backward propagation, a cost function is determined based on 
the observed network output and its desired response. The 
gradient of the cost function with respect to the weighted sum in 
the output layer is back propagated through the weight layers to 
determine the corresponding gradients for all the weight layers. 
During the weight update stage, the neuron responses from the 
forward propagation and the gradients from the backward 
propagation are used to determine the desired weight updates. A 
crossbar array of analog memory devices could perform the 
matrix-vector multiplications during the forward and backward 
propagation stages. However, to train the DNNs, the device 
conductance values need to be adjusted with high-resolution, 
i.e., 10 or more bits, which presents a major challenge 
considering the physical nature of the nanoscale memory 
devices. The gradual conductance changes in the analog 
memory device generally involve an atomic rearrangement in a 

Figure 1 Potential architecture of a computational memory chip 
comprising multiple crossbar arrays of memristive devices performing 
computational tasks in place. 
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nanometric volume, which make them of limited precision, 
stochastic, and asymmetric. Accumulating gradients in high 
precision has been observed to tolerate limited-precision 
weights during training [24-28]. Inspired by this and our recent 
mixed-precision architecture [20], we developed a mixed-
precision computational memory architecture for deep learning. 
Here, analog memory arrays are used for fast matrix-vector 
multiplications. The limited-precision weight updates are 
compensated by high-precision weight accumulations in a 
digital unit, and conductance updates are performed using 
sporadic and blind programming pulses [21].  

The basic computations for training a neural network and the 
mixed-precision in-memory computing architecture for training 
DNNs are shown in Figure 2a,b, respectively. The mixed-
precision architecture is comprised of a computational memory 
unit which has several memristive crossbar arrays storing the 
DNN weight values, and a high-precision digital computing 
unit. A weight, Wji, in any layer of a DNN (Figure 2a) 
connecting neuron i to the next-layer neuron j is mapped to a 
conductance value Gji using one or more analog memory 
devices in the computational memory. For the forward 
propagation, the neuron activations, xi, are applied as 
corresponding voltage pulses, Vxi, to the crossbar rows. The 
resulting currents, which are proportional to the individual 
synaptic conductance values, will accumulate along the columns 
of the crossbar array i.e., Ij = ∑iGjiVxi, and will correspond to 
∑iWjixi. These currents, after sensing and digitization, using 
analog-to-digital converters (ADCs), become the input for the 

next-layer neurons. The same crossbar array can also be used to 
perform the matrix-vector multiplication during the 
backpropagation through the same layer. In this case, the errors 
δj to be backpropagated are applied as voltages Vδj to the 
columns of the crossbar array, and the total current obtained 
along the rows represents the weighted sum ∑jWjiδj, which can 
be used to determine the gradients for the neurons in the 
preceding layer.  

The desired update for any weight layer is determined as an 
outer product of the pre-neuron activations and error at the post 
neuron pre-activations, i.e. 𝛥𝑊௝௜ = 𝜂𝛿௝𝑥௜, where η is a suitably 
chosen learning rate. The magnitudes of the weight updates are 
often many orders magnitude smaller compared to the 
corresponding weight values, while the update precision offered 
by the analog memory devices used to store them is only a few 
bits. This presents significant challenges to directly 
programming the updates to the devices. As a result, in the 
mixed-precision training architecture, we accumulate these 
small updates in a high-precision variable χ in the digital unit. 
When the weight updates accumulated over several training 
instances becomes comparable to the analog memory update 
precision, corresponding synaptic device conductance is 
modified. Let ε be the average change in the weight that can be 
reliably programmed to the device. Then the number of 
programming pulses 𝑝 to be applied is determined by rounding 
χ/ε towards zero. The sign of 𝑝 determines if the conductance is 
to be potentiated or depressed. We chose to use a blind device 
programming scheme, which does not verify if the resulting 

 

 
 
Figure 2 a. Basic computations for training a neural network. Wji is the connection strength between a neuron in layer i to a neuron in layer j.  The 
neuron activations xi are multiplied by the connection strength and accumulated to determine the net input to the next layer neurons. A non-linear 
function f is applied over the weighted sum to determine the next layer neuron activations xj. Likewise, the gradients from the layer j, δj is 
backpropagated through the weighted connections to determine the gradients at the preceding layer i, δi. The weight update 𝜟Wji is determined as a 
product of xi and δj scaled by a suitable learning rate 𝜼. b. Architecture of the computational memory based mixed-precision system for deep 
learning. The computational memory unit implements the DNN weighted connections using the conductance values of analog memory devices in 
a crossbar array. The crossbar arrays perform the weighted summation during the forward inference and backpropagation. The high precision digital 
unit determines weight updates, ΔW, based on the results from the computational memory unit.  The updates are accumulated in high precision in 
χ. The number of programming pulses, p, to update corresponding devices are determined by rounding χ/ε towards zero, where ε represents the 
average device update granularity. After each conductance update in the computational memory, pε is subtracted from χ. Adapted from [21].    
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conductance change matches the desired change, for efficiency. 
Once the weights stored in the analog memory are updated, 𝑝𝜀 
is subtracted from χ. Note that, the device programming is often 
highly stochastic, non-linear, and asymmetric. However, mixed-
precision training appears to compensate for these erroneous 
updates during subsequent training processes and achieve high 
classification accuracies [21].  

The sensitivity of the mixed-precision architecture to different 
device non-idealities was evaluated via simulations by training a 
two-layer neural network to classify handwritten digits from the 
MNIST dataset, as shown in Figure 3a [21,22]. The number of 
neurons in the input, the hidden and the output layer is 784, 250, 
and 10, respectively and the hidden and the output neurons are 
sigmoid. The network weights were implemented using a 
computational memory array whose weight updates are assumed 
to exhibit non-ideal behavior. The network was trained using 
60,000 gray-scale images of size 28×28 and its classification 
capacity was evaluated using a similar but disjoint set of 10,000 
test images. For the test accuracies in Figure 3b, the memory 
device updates were linear with an update resolution of ε = 
2/(2n-2) where the bit resolution n was varied between 2 to 8 
within a hypothetical conductance range of [-1 1]. It was found 
that a 4-bit resolution was sufficient to attain a performance 
comparable to that of the 64-bit floating-point reference.  

In this mixed-precision scheme, weight update accumulation 
can reduce the number of required device programming 
instances by more than two orders of magnitude, as smaller 

updates are combined and applied together to the device. As can 
be seen in Figure 3c, the device updates become sparser as the 
weight update granularity, ε, becomes larger. The weight update 
accumulation schemes enable the architecture to be more 
tolerant to device programming noise as well. Previous studies 
have indicated the need for highly symmetric weight updates 
with less than 2% error tolerance [29]. As a result, directly 
applying the weight updates to the non-ideal analog memory 
devices leads to significant loss in accuracy [30]. In the mixed-
precision architecture, accumulating the weight updates in high-
precision in the digital memory and sporadically applying them 
to the low-precision synaptic devices significantly relaxes the 
requirements of these nano-scale memory devices in terms of 
symmetry, precision and endurance. For example, the mixed-
precision training architecture allows for different update 
thresholds for incrementing and decrementing the conductance 
values, depending on the device asymmetry characteristics, 
incurring negligible loss in training performance (Figure 3d). 
Finally, the mixed-precision training architecture is also tolerant 
to non-linear conductance updates when trained using average 
update resolution as the programming threshold (Figure 3e).  

The computational efficiency of the mixed-precision in-
memory training architecture, compared to conventional deep 
learning training approaches, arises from storing the synaptic 
weights in the conductance states of nanoscale non-volatile 
memory devises organized in crossbar arrays and performing 
the expensive weighted summations in place in a non-von 
Neumann manner. At the other end of the spectrum lies the in-

 

 
Figure 3 a. A neural network for classifying handwritten digits from the MNIST dataset. b. Linear devices with symmetric potentiation and 
depression granularity are assumed as computational memory elements. The standard deviation of the weight-update randomness, σ(ΔŴ), is taken 
as a multiple of the weight-update granularity, ε. c. The number of devices programmed per epoch for different values of ε. d. The effect of 
asymmetric conductance update. 8-bit resolution is assumed for the weight increment and weight depression resolution is varied. e. The test accuracy 
as a function of the weight update non-linearity. β=0 corresponds to linear update within the weight range [-1, 1] and β=5 corresponds to nearly an 
abrupt transition between the weight range boundaries. Adapted from [22].    
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memory acceleration with in-place updates, where all the stages 
of the training, including the forward and backward data 
propagation and the weight update stages are implemented in 
the computational memory array [29-31]. These schemes use a 
fully parallel conductance update approach by overlapping 
pulses from the pre- and post-synaptic neuron layers. However, 
this could often lead to stringent requirements from the non-
volatile memory devices such as 10-bit granularity and 
symmetric updates. Thus, the implementation of gradient-
descent-based training using large batch sizes and optimization 
schemes based on momentum and ADAM are quite challenging. 
Implementing the weight update stage in the high-precision 
digital unit allows our mixed-precision training architecture to 
exploit the efficiency of computational memory while 
maintaining the flexibility of the high-precision training systems 
[32].  

3 Training simulation using PCM model  
We also evaluated the mixed-precision training architecture 
using models that reliably capture the phase-change memory 
(PCM) programming statistics. PCM is one of the most 
advanced non-volatile memory technologies that has already 
found applications in storage-class memory [3], computational 
memory [14,15], and neuromorphic computing [2,33,34]. The 
memory device consists of a chalcogenide material sandwiched 
between two electrodes. As fabricated, the chalcogenide is in 
crystalline state and its phase can be altered by suitable melt-

quench processes. The resistivity of the crystalline and 
amorphous phase of the material differs by more than two 
orders of magnitude and this allows the device to store 
information in its relative phase configuration. By passing a 
sufficiently large current (RESET pulse) through a relatively 
narrow bottom electrode, an amorphous region similar to the 
mushroom structure in Figure 4a can be created around the 
bottom electrode. The amorphous region blocks the conductance 
path between the electrodes in this phase configuration and the 
device will be in a high resistance state. The amorphous region 
can be progressively crystallized by increasing the device 
temperature to crystallization regime via current pulses of 
suitable amplitude (SET pulse). The ability to gradually 
modulate the device conductance by a sequence of SET pulses 
makes PCM a suitable candidate to implement the weight 
adaptation dynamics of DNNs on the chip.  

We characterize doped Ge2Sb2Te5 (GST)-based PCM devices 
from a prototype chip fabricated in 90 nm CMOS technology 
[15]. The array consists of a matrix of 512 word lines and 2,048 
bit lines connected in a crossbar configuration. Each crosspoint 
consists of a PCM device in series with an access transistor. The 
cumulative conductance update behavior of the PCM is 
measured by initializing 10,000 devices to a conductance 
distribution around 0.06 µS and applying a sequence of 20 SET 
pulses of 90 µA amplitude and 50 ns duration. The devices 
show a non-linear saturating conductance update behavior 
(Figure 4a). The significant randomness observed in the 

 

 
 
Figure 4 a. The statistics of conductance evolution from the devices and the corresponding model in response to repeated application of SET pulses 
of amplitude 90 µA and duration 50 ns. b. The distribution of conductance from the device and model after 20 SET programming pulses. c.
Conductance evolution from individual instances of devices and model during the programming sequence. Adapted from [37]. 
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conductance update behavior is a combination of inter and intra 
device variability. The inherent randomness associated with the 
crystallization process could be the significant contributing 
factor here [35, 36]. We analyzed the mean and standard 
deviation of conductance update from each programming pulse 
in a state-dependent manner. Using a combination of simple 
mathematical formulations, we were able to develop a 
phenomenological model that capture the conductance update 
statistics remarkably well [37]. In addition to the overall 
conductance distribution after each programming event (Figure 
4b), the model also captures the individual device conductance 
evolution behavior reasonably well (Figure 4c).  

The statistical model was used to emulate the conductance 
update behavior of a two-layer perceptron performing 
handwritten digit classification (Figure 5a). Each of the 198,760 
weights in the network, 𝑊, is assumed to be realized using two 
PCM devices in a differential configuration, i.e., 𝑊 =

𝛽൫𝐺௣ − 𝐺௡൯ for a scalar constant 𝛽. The model instances were 
initialized to a conductance distribution of 1.6 µS mean and 0.83 
µS standard deviation. The conductance of the differential 
synapse in the range [-8 µS, 8 µS] was linearly mapped to [-1, 
1] in the weight domain. The network was trained using the 
mixed-precision in-memory computing architecture. That 
means, the model conductance values were used to perform the 
matrix-vector multiplications for the forward and backward data 
propagation stages. Inputs and outputs of the computational 
memory arrays were quantized to 8-bits resolution assuming 8-
bit analog-digital converters at the periphery. The weight 
updates were accumulated in χ memory and when the magnitude 
of χ exceeds ε, corresponding to a 0.77 µS conductance change, 
the device conductance values were updated using the model in 
a state-dependent manner. 𝐺௣ is updated for potentiation and 𝐺௡ 
is updated for depression. Due to accumulate and program 
scheme, the average number of devices updated after each 
training example was less than one, indicating that the actual 
device programming overhead will be negligible. To avoid 

conductance saturation from repeated SET pulse updates in the 
differential configuration, saturated device states were 
reprogrammed to the conductance difference of the pair every 
100 training images. 

The network was trained using 60,000 training images from 
the MNIST dataset for 50 epochs. We used stochastic gradient 
descent with unit sized training batch and a fixed learning rate 
of 0.2. The classification performance of the network on the 
training set and on a disjoint test set of 10,000 images are 
plotted as a function of training epoch is shown in Figure 5b.  
The network achieved a maximum test set accuracy of 98.31% 
under the mixed precision in-memory computing training 
compared to the 98.42% in the corresponding high-precision 
training. An online demonstration of the simulator can be found 
in [38]. The high-precision comparable classification accuracy 
from the PCM based neural network suggests that the 
computational memory based mixed-precision training 
architecture can potentially train realistic analog memory 
devices to find solutions to complex deep learning problems.  

4 Improving the memory: architectural and 
device-level innovations 
The presented simulation results of neural networks using the 
mixed-precision in-memory computing architecture approach 
have demonstrated the computational capabilities of today’s 
resistive memory technology. However, enhancing the 
performance of the devices is crucial for increasing the range of 
targeted applications and building next-generation of 
computational memory-based systems. For example, PCM 
devices exhibit a limited dynamic range, which can be covered 
upon the application of only a few electrical pulses. In addition, 
the conductance response is highly nonlinear and stochastic. 
Moreover, additional technology-specific device behavior such 
as the conductance response asymmetry, temporal evolution of 
conductance values, (i.e. conductance drift), limited endurance 

 

 
 
Figure 5 a. Network structure used for the mixed-precision in-memory training, based on a PCM model, for MNIST digit classification. Each 
weight W in the network is realized as the difference in conductance values of two PCM cells, Gp and Gn. b. Classification accuracies on the training 
and test set from the mixed-precision training simulation. The maximum test set accuracy, 98.31%, is within 0.11% of that obtained in the floating-
point (FP64) software training. Adapted from [39]. 
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(approx. 109 to 1012), the frequency-dependent noise arising 
from the amorphous phase and temperature-dependent 
conductance variations pose significant challenges for PCM. 
These device non-idealities have been shown to have a 
detrimental impact on computational memory-based systems 
where resistive memory serves as the computational primitive 
[30,40-42].  

One path to address some of these challenges is advances in 
synaptic-cell architectures. Using multiple PCM devices as a 
single synaptic unit has been shown to improve the conductance 
change granularity, nonlinearity, asymmetry, and stochasticity 
of PCM as well as the conductance drift for both neuromorphic 
and in-memory computing [40,42]. Note that such an 
architectural advancement is applicable not only to PCM but to 
a wide range of other resistive memory technologies [43]. A 
second path for improved memory performance is advances in 
materials science and device technology. The projected PCM 
concept aims to decouple the device read out from the electrical 
properties of the amorphous phase thus significantly reducing 
the drift, noise and temperature-sensitivity [44-46]. For the 
remainder of this section, the multi-PCM synaptic architecture 
and projected-PCM devices will be described in more detail.  

4.1 Architectural level innovations: multi-PCM 
synaptic architecture 

In a multi-PCM synapse, the synaptic weight is represented by 
the combined conductance of N devices, see Figure 6a. By 
using multiple devices to represent a synaptic weight, the 
overall achievable conductance range, i.e., Gmax – Gmin, and 
resolution of the synapse are increased. When reading the 
synapse, the individual device conductances are read and 
summed. For programming the synapse, only one out of N PCM 
devices is selected and updated at a time. This selection is done 
with a counter-based arbitration scheme, where the value of a 
counter indicates which device from the synapse is to be 
updated at any particular instance. A single selection counter is 
used for an entire array of synapses and is incremented after 
every device update. In addition to the global selection counter, 
additional independent counters, such as a potentiation counter 
or a depression counter, can be used to modulate the frequency 
of weight increase (potentiation) and decrease (depression) 
respectively. These secondary counters can be particularly 
useful for devices with asymmetric conductance response as 
well as devices with large conductance change. These additional 
counters are incremented after every device update and the 
device update is enabled only when their value is 1. This implies 
that only one out of m updates is applied if m is the maximum 
value or length of these counters.  

Experimental characterizations of multi-PCM synapses 
comprising 1, 3, and 7 PCM devices per synapse shows, Figure 

 

 
Figure 6 a. The multi-PCM synaptic architecture. The net synaptic weight is represented by the combined conductance of N PCM devices. To 
realize synaptic efficacy (read operation), a read voltage signal, V, is applied to all devices. The resulting current flowing through each device is 
summed up to generate the synaptic output. To capture synaptic plasticity (write operation), only one of the devices is selected with the help of a 
selection counter and programmed at any instance of synaptic update. In addition to the selection counter, independent potentiation and depression 
counters can serve to control the frequency of the potentiation or depression events. b. Using multi-PCM synapses helps increasing the dynamic 
range and improving the asymmetric and nonlinear conductance response (upper) and stochasticity (lower) of PCM. Measurements are based on 
1,000 90 nm GST mushroom multi-PCM synapses. Adapted from [41].    
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6b, that the conductance range scales linearly with the number 
of devices per synapse. Furthermore, a linear conductance 
change can be obtained over an extended range of pulses. With 
multiple devices, the challenge of an asymmetric conductance 
response can be partially mitigated. Moreover, the variance of 
the overall conductance change scales linearly with the number 
of devices per synapse, leading to an increase in the resolution 
of the synapse when using more devices. The concept is shown 
to significantly improve accuracies for 2nd generation (ANNs) 
and 3rd generation (SNNs) of neural networks through 
simulations and experiments [41].  

A key advantage of the proposed multi-PCM synapse is its 
crossbar compatibility. In addition, the architecture does not 
bring a significant energy overhead since PCM devices can be 
read with low energy (1 - 100 fJ per device) [15] and only one 
device is programmed per update as in a conventional synapse. 
Although the area usage increases, multi-PCM synapses could 
still be very area-efficient since it is reported that PCM devices 
could be scaled to very small dimensions of a few tens of 

nanometers [3]. The proposed architecture also offers several 
advantages in terms of reliability. The other constituent devices 
of a synapse could compensate for the occasional device failure. 
Moreover, each device in a synapse gets programmed less 
frequently than if a single device were used, which effectively 
increases the overall lifetime of a multi-PCM synapse. The 
potentiation and depression counters reduce the effective 
number of programming operations of a synapse, further 
improving endurance-related issues. 

4.2 Device-level innovations: projected phase 
change memory 
Scalar multiply operations can be performed using PCM by 
mapping the one variable proportionally to a read voltage and 
the other into a conductance state. Due to Ohm’s law, one can 
obtain the result from the read current. In addition, if devices are 
organized in a crossbar configuration, one can multiply a matrix 
with a vector by invoking the Kirchhoff’s current summation 
rule. These scalar and matrix-vector multiplication operations 

 

 
Figure 7 a. The concept of projected memory: The non-linear IV-characteristic of the amorphous phase ensures that during “write” most of the 
current flows through the phase-change segment resulting in phase transition, but during “read” it bypasses the highly resistive amorphous phase 
and flows through the projection material. b. Normalized conductance versus time for different programmed states in projected-PCM, compared to 
conventional PCM. The drift coefficient (𝝂) is determined by a power-law fit and was measured 50x reduced. c. Normalized conductance versus 
temperature for different annealed states in PCM and projected-PCM. d. 20,000 scalar multiplication results 𝜷෡ against exact ones 𝜷 on conventional 
and projected PCM devices. The color gradient shows the effect of resistance drift. Drift, 1/f noise and non-Ohmic behavior on PCM causes poor 
precision, as opposed to projected-PCM. e. Experimental emulation of 2000 matrix-vector multiplications employing 12 projected-PCM devices 
arranged in a 4×3 virtual crossbar configuration. Precision loss of results 𝒃෡𝒊 compared to the exact ones 𝒃𝒊 at elevated temperatures is recovered by 
the compensation scheme and is equivalent to the 8-bit fixed point arithmetic. Adapted from [45,46].    
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are critical for in-memory and neuromorphic computing and the 
precision of these operations is strongly determined by the 
conductance variations associated with the amorphous phase of 
these devices. We introduced a device-level solution, namely 
the projected memory, to increase the multiplication precision 
and address the critical issue of sensitivity to temperature 
variations [44-46].  

In a projected memory device, the essential idea is to design 
the device such that the physical mechanism of information 
storage is decoupled from the information-retrieval process. The 
projected phase-change memory device consists of a non-
insulating projection segment in parallel to the phase-change 
segment. By exploiting the highly non-linear IV (current-
voltage) characteristics of the amorphous phase, it is ensured 
that the projection segment has minimal impact on the operation 
of the device during the write process. However, during read, 
the programmed state’s conductance is determined by the 
fraction of the projection segment that appears parallel to the 
amorphous phase-change segment as seen in Figure 7a.  

Conductance drift [47] has a detrimental effect on maintaining 
reliably the programmed values. We have shown, Figure 7b, 
that in projected-PCM devices conductance drift can be reduced 
50-fold. Another key challenge is that the activation energy of 
the thermally activated electrical transport tends to fluctuate for 
different programmed states. This varying exponential 
temperature dependence of conductance hinders temperature 
compensation schemes on an array level. Projected-PCM 
devices exhibit a linear, homogeneous and substantially weaker 
temperature dependence as is shown in Figure 7c. In addition, 
the read-current noise was measured 4 orders of magnitude 
lower in projected-PCM devices compared to conventional 
PCM. Collectively, all these performance enhancements allow 
us to execute in-memory operations with precision that has 
never been observed so far in any of the resistive technologies. 
Using projected PCM devices, it is possible to achieve a scalar 
multiply operation with precision equivalent to 8-bit fixed point 

arithmetic at room temperature, a remarkable improvement over 
conventional PCM, see Figure 7d.  

One particularly tantalizing prospect is to compensate for the 
temperature-dependent conductance variations at a crossbar 
array level. Projected-PCM devices with their well-defined and 
state-independent temperature dependence of electrical transport 
are much more amenable to an effective compensation scheme. 
This is devised by multiplying the read current with a single-
variable equation that describes the temperature dependence of 
the projection material, that is f (T) = 1 + αp(T-T0). The efficacy 
of this method to retain the 8-bit-equivalent precision at elevated 
temperatures is experimentally proven, as can be seen in Figure 
7e. 

5 System integration 
In this section we discuss the system integration aspects of the 
proposed DNN accelerator. Firstly, we present an overview of 
the end-to-end system. We then discuss the high-level system 
architecture of the hardware accelerator itself, including on-chip 
core-to-core interconnect, and other hardware design choices 
and considerations. Then we detail the software stack that spans 
from user-level application all the way to the low-level driver 
that directly controls the accelerator. Finally, we discuss the 
hardware acceleration and efficiency gain attainable from the 
computational memory based mixed-precision architecture. At 
the core of the software stack is a DNN compiler that translates 
models into optimized operations for the accelerator. Figure 8 
depicts an overview of the different system integration 
components. Besides the hardware accelerator itself, there are 
three software components: the computational memory OS 
driver, the computational memory compiler and a library that 
allows user applications to directly perform inference or training 
on the hardware accelerator without having to deal with its low-
level details. The user should be able to train a DNN 
architecture using an existing DNN framework (e.g., 
Tensorflow [48]) and the software stack should be responsible 
to utilize the DNN accelerator hardware and improve training 
time. Similarly, for inference, the user should be able to provide 
a pre-trained model in a standard format (e.g., ONNX [49]) and 
test data to run inference on. The software stack is responsible 
to transparently compile the model into optimized operations 
and routing and orchestrate model and data movement to and 
from the accelerator both for training and inference. 

5.1 Hardware accelerator 
As discussed in the previous sections the hardware is an array of 
computational memory-based processing units, made up of a 
crossbar array of PCM devices, and a digital processing element 
handling the activation functions and batch normalization. 
Compared to all-digital implementations, in memory computing 
is more amenable for highly pipelined dataflows, which make 
full use of the physically instantiated neurons and bear 
significant advantages in terms of throughput, latency and 
power consumption. We explore their use in the execution of 
convolutional neural networks, which feature the most diverse 
set of connectivity and therefore are the hardest to physically 
map on the hardware. In this case, the suitability of in-memory 
computing for pipelining techniques is further emphasized by 

Figure 8 Overview of the system integration for an in-memory 
computing DNN accelerator. 
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the time complexity of the convolution operation. In all-digital 
accelerators, convolutions at different layers, with a different 
number of input and output channels, are executed with 
different latency. This is detrimental to a pipelined execution, 
since layer latency is not uniform across the network and the 
pipeline would ultimately move with the latency of the most 
computationally intensive layer. Conversely, the computational 
memory architecture maps all the filter kernels in a convolution 
layer to a single crossbar array (Figure 6) and hence generates 
all the filter responses corresponding to an input patch in 
parallel irrespective of the number of filters. The next layer can 
start the convolution as soon as an area corresponding to next 
layer filter size is processed from the current layer. 
 

Given the entirety of physically static, temporally uniform 
convolutional layers for a certain CNN architecture, the 
challenge is transferred to providing a communication fabric 
that can efficiently move activations from one computational 
memory unit to another. In order to maintain the synchronicity 
of the pipeline, the fabric must exactly mirror the connectivity 
of the CNN architecture. This task is crucial in the design, since 
the overall pipeline latency goes with the latency of the slowest 
connection and, as described above, given that the 
computational time per layer is uniform throughout the network, 
communication time between layers should also be uniform.  

It is then evident that any endeavour that adapts 
communication infrastructures from digital systems would be 
unsuitable for pipelined dataflows. i.e., taking a common 2D 
mesh as an example, except for the pre-2014 path-connected 
CNNs, the mapping of modern CNNs would ill-fit the hardware 
connections, i.e., certain data movements would require multiple 
hops, thus slowing down the entire pipeline.  

This problem formulation and principles apply to both 
forward inference and backpropagation. However, in the latter 
case the hardware should provide the capabilities of performing 
the transpose read on the crossbar arrays and also support the 
transmission of data on the links bidirectionally. In this case, in 
order to support backpropagation, the hardware communication 
infrastructure must allow data movement that exactly matches 
the network connectivity in the same fashion as for the forward 
dataflow.  

In general terms, it has to be assessed whether the problem of 
designing such topology is well posed. For example, a fixed, 

hardware communication fabric cannot flexibly mirror the 
connectivity of several state-of-the-art CNNs if these are 
structured in an unsystematic, inconsistent way. Nevertheless, 
considering CNNs in terms of their graph representation, it is 
apparent their topologies are not an arbitrary collection of 
vertices and edges. That is their connectivity is regular and 
symmetric, so much so that one specific type of connectivity can 
be considered archetypal of one category of CNNs, and any 
basic narrative on the evolution of CNNs structures is related 
with equal effectiveness as a narrative on the evolution of the 
connectivities used therein.  

We recognize four major shifts in the CNN architecture 
paradigm, which match shifts in their connectivity. Path 
connectivity featured from the dawn of CNNs [50] throughout 
their high in popularity in 2012, Inception-style [51] 
connectivity with multiple parallel connections regularly 
coalescing into a concatenation of the feature maps, residual 
[52] connectivity with residual connections, and ultimately 
DenseNet-style [53] connectivity.  

Thus, given a clear display of the topologies for which 
interconnection must be provided and having confirmed that the 
problem is well posed, the implementation of a CNN in a 
pipelined fashion on an array of computational elements that 
implements a certain communication fabric is possible if, 
assigned its convolutional layers to the computational units, 
there exist communication channels that match the connectivity 
of the network. We reformulate the design of the topology by 
relating it in a bipartite fashion, on one side as high-level 
mapping, in terms of the graph representation of both CNNs and 
communication fabric topology, and on the other at the physical 
level, dealing with the feasibility of its implementation and 
targeting the specificities of computational memory. With 
regard to the former, given a communication fabric that 
implements a graph topology F and the directed graph 
representation C of a CNN, with vertices representing 
convolutional layers and edges representing activations directed 
toward the direction of computation, the CNN is executable in a 
pipelined fashion on a communication fabric implementing F if 
there exists a homomorphism h:CF. With regard to the 
implementation of the communication fabric, because of the 
non-negligible physical size of computational memory arrays 
with respect to their digital counterparts, the communication 
infrastructure also needs to exploit efficiently proximity in space 
of the computational units in order to meet the latency 

 

 
 
Figure 9 a. Example of mapping for a four-layer feedforward network and b. a five-layer Inception-style network using our proposed topology. In 
b, vertex C represents the concatenation operation. Adapted from [54]. 
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requirements and allow attainable design of the communication 
circuits.  

We have proposed in [54] a network topology that by 
construction is homomorphic to all state-of-art convolutional 
neural networks, while providing on the physical layer a 
scalable, efficient implementation. Examples of the mapping for 
feedforward and Inception-style connectivity on our proposed 
topology are displayed in Figure 9. The proposed topology is 
built on a unit graph equal to complete graph K6, that is a graph 
with 6 vertices all connected with one another. The overall N-
vertices graph topology is built by applying selected vector 
identification operations to a number of unit graphs. By 
construction, this topology is homomorphic to all four types of 
connectivity described above.  

Delving now into the physical layer, the corresponding 
physical implementation of the unit graph sees I/O links 
implementing the complete connection of a 2-by-3 
neighbourhood, with the bandwidth of the links tailored layers 
with the maximum number of channels. During execution, at 
each cycle the activations from one convolution are transferred 
by the links from one crossbar to another that implements the 
subsequent layer; the bandwidth of the links being tailored on 
the layers with the largest number of activations.  

By enforcing the hardware connectivity for seamless 
pipelined execution, the aim moves at maximally exploiting the 
resources available in order to guarantee efficient area 
utilization of the crossbars and optimizing throughput and 
latency. Throughout the network, different kernels result at 
different area utilization of the crossbar. In particular, area 
utilization is quite poor for the first shallow layers. We can 
increase the crossbar areal efficiency by computing several 
activations of the same layer in parallel on the same crossbar, in 
a number proportional to the depth of each layer such that the 
bandwidth of the links is always fully exploited. While this 
method increases crossbar areal efficiency, it simultaneously 

also increases the throughput and decreases the latency of the 
CNNs implemented.  

Lastly, this approach is also scalable to multichip 
implementations, by extending the on-chip connectivity of unit 
graphs from one chip to another with off-chip links.  

5.2 Software stack 
The software stack enables programmers to use the DNN 
accelerator without having to deal with underlying hardware 
complexities such as the interconnect topology, the 
characteristics of the chips, or the programming of the crossbar 
arrays. Figure 10 illustrates an example of a user application in 
python pseudo-code that trains a simple two-layer neural 
network using the Tensorflow framework, with the respective 
dataflow graph shown on the right. The in-memory computing 
accelerator software stack provides plugins to existing 
frameworks, like Tensorflow, and is able to identify a set of 
training operators that can be fused into composite operators 
that map nicely to the in-memory computing accelerator 
hardware in a pipeline fashion. The software stack is able to 
compile the training dataflow graph into operators suitable for 
the accelerator, map the training pipeline to the hardware, and 
orchestrate data movement and synchronizations steps to and 
from the accelerator.  

An example of an inference application in python pseudo-
code for a DNN model based on the Resnet32 architecture using 
Imagenet [55] evaluation data, is shown in Figure 11. The 
example highlights the minimum set of user interfaces the 
software stack needs to support in order to perform inference: 
loading a dataset to be evaluated (load_dataset()), loading a pre-
trained model (load_model()), executing the inference (eval), 
and retrieving prediction statistics (e.g., 
average_precision_call()). Support for loading a dataset can be 
implemented by re-using existing software libraries for the 
target dataset format (e.g., pandas, etc.). The main challenge of 

 

 
 
Figure 10 Training example in python pseudo-code of MNIST using the in-memory computing accelerator software stack on top of the Tensorflow 
framework. 

# Define variables and placeholders
weights1 = tf.get_variable("weights_1", [784, 250])
weights2 = tf.get_variable("weights_2", [250, 10])
input = tf.placeholder(shape=(None, 784))
label = tf.placeholder(shape=(None, 10))
# Activations
a1 = tf.sigmoid(tf.matmul(weights1, input))
a2 = tf.sigmoid(tf.matmul(weights2, a1))
# Loss function
loss = tf.nn.l2_loss(a2 - label)

# Train operation
optimizer =
tf.GradientDescentOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(loss)
sess = tf.Session()
samples = ...
labels = ...

# For training:
sess.run(train_op, feed_dict={'input': samples,

'label': labels})

input
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matmul weights2
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ΔW2
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the software stack is to understand and compile a supplied DNN 
model graph, map it efficiently to the hardware accelerator 
architecture, and orchestrate data movement to and from the 
accelerator. This complexity is completely hidden from the user 
and is mostly implemented within the load_model() API, with 
the inference execution and data movement taking place during 
the eval() API call.  

We now discuss the DNN model graph compilation and its 
execution to the in-memory computing accelerator accelerator. 
To support the above high-level programming interface, the 
software stack is split into multiple sub-systems, including a 
compiler, a run-time library, and a driver.  

The driver, a part of the operating system, is the lowest 
software layer and is responsible for enabling applications to 
program and use the accelerator. First, it is responsible for 
identifying the accelerator and providing applications with 
information about its capabilities. This information includes: the 
number of the analog cores as well as their size, their 
interconnection, the capabilities of the digital units, etc. The 
driver also exposes a low-level interface that allows applications 
to configure the accelerator. Specifically, using the driver 
applications can program the analog cores with specific synaptic 
weights, program the digital units, configure how data flows 
between the analog cores and digital units, as well as control 
how data are transferred from host memory to accelerator 

memory and vice versa using direct-memory access (DMA) 
operations.  

The run-time library provides a convenient, yet low-level, 
programming interface for applications to use the driver. It 
abstracts away details such as how the user-space program and 
the driver communicate, as well as implementing functionality 
commonly used by applications such as data structures for 
describing the configuration of the chip, as well as its 
capabilities.  

Using the run-time library, a programmer can make full use of 

the accelerator. This is, however, a complicated endeavor and 
requires significant knowledge and expertise on behalf of the 
programmer about the inner workings of the accelerator, 
especially for achieving good performance. This is the 
equivalent of programming a CPU using machine language, and 
even though we expect some users to do so, we want to allow a 
wider class of applications to take advantage of the accelerator 
without requiring their programmers to fully program it.  

To this end, the software stack also includes a complier. The 
compiler is responsible for accepting machine learning models 
(e.g., ONNX), which can be used both for training and 
inference, as input and mapping them for execution to the 
accelerator. This includes mapping the nodes of the machine 
learning model into accelerator functions, programming the 
crossbar arrays with the proper synaptic ways, and configuring 
the communication between the different accelerator units but 
also the host. The output of the compiler is a program that 
configures the chip using calls to the library and the driver, and 
then executes the given machine learning model by using the 
accelerator. The compiler is responsible for transforming 
operations (e.g., convolutions) in a proper form so that they can 
be executed by the accelerator. Because not all operations can 
be mapped into the accelerator, the compiler might choose to 
implement some computations on the host or even reject the 
machine learning model as incompatible.  

5.3 Performance Assessment  
In the previous subsections, we discussed how the 
computational memory can efficiently be used to map DNNs 
on-chip and perform forward inference and training. In this 
subsection, we will assess the energy efficiency and acceleration 
of the mixed-precision computational memory architecture for 
training.  

We estimated the energy efficiency of the mixed-precision 
training architecture with respect to a corresponding 32-bit 
design based on the example two-layer perceptron used to 
perform MNIST digit classification. In both designs, all the 
digital memory needed for training was assumed to be 
implemented with on-chip static random-access memory 
(SRAM). The computational-memory-based mixed-precision 
design resulted in an average energy reduction of approximately 
270x for the forward and backward propagation stages. Since 
we can substantially improve the energy efficiency of the data 
propagation stages, any optimization of the remaining digital 
update unit will result in significantly improved overall 
performance. For example, in our comparative study, the digital 
update unit in the mixed-precision training architecture was 
optimized. In particular, the outer-product based weight update 
digital computation was performed with reduced precision. The 
additional device programming overhead was negligible, since 
on average only one PCM device is programmed every two 
training images. All of this resulted in approximately 140x 
reduction in energy consumption for the weight update stage in 
mixed-precision in memory computing architecture with respect 
to the 32-bit design. Overall, the mixed-precision design could 
accelerate the training of the two-layer perceptron by 
approximately 10x and reduce the energy consumption by about 
170x with respect to the 32-bit implementation. 

Figure 11 Inference example in python pseudo-code of Resnet32 using 
the in-memory computing accelerator software stack. 

import cmDNN as cm

DATASET_LOC = '/path/to/imagenet1k/test'
MODEL_LOC = '/path/to/onnx/resnet-32.model'

# Load dataset
X_eval,y_eval = cm.load_dataset(DATASET_LOC)

# Load model
resnet32 = cm.load_model(MODEL_LOC)

# Run inference on validation dataset
pred = resnet32.eval(X_eval, y_eval)

# Print accuracy stats for inference
print(cm.average_precision_call(pred))
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Deep learning based on a mixed-precision computational 
memory architecture is expected to bring efficiency gains to 
larger and more complex networks as well. Using resistive 
memory arrays to store DNN weights allows large networks to 
be fit on-chip. Moreover, each array can perform the matrix-
vector multiplications of each layer independently with very 
high efficiency and minimal intermediate data movements. In 
contrast to the conventional fully digital implementations, where 
the same resources are shared for all the computations, the 
dedicated computational memory arrays can enable efficient 
pipelining of data propagations across layers, which could be 
highly beneficial for very deep networks. On the other hand, 
compared to fully analog deep learning accelerators [31, 56], we 
require an additional high-precision memory to accumulate 
weight updates. However, the digital implementation of the 
training optimizer has several advantages. The digital optimizer 
compensates for the analog device non-idealities, extends its 
endurance and makes the trade-off between precision and 
accuracy more favorable.  This also gives the computational 
memory architecture the flexibility to be configured to suit a 
wider class of deep learning models and algorithms.  

For inference-only applications, where data is propagated 
through the network on offline-trained weights, the efficient 
matrix-vector multiplication realized via in-memory computing 
is very attractive. The energy efficiency of PCM-based 
computational memory for inference is expected to be 
comparable to that achieved using other non-volatile memory 
technologies such as RRAM. The state-of-the-art experimental 
demonstrations of DNN inference based on in-memory 
computing have reported competitive energy efficiencies 
between 10 and 100 TOPS/W for reduced-precision matrix-
vector multiplications [57, 58]. However, the full system 
efficiency including array-to-array communication may be 
lower, depending on how efficiently the communication links 
can transmit data. 

 

Conclusion 
Due to the explosive growth of data-centric AI workloads and 
the imminent end of CMOS scaling laws, there is a significant 
need to explore alternate non-von Neumann computing 
architectures as well as post-silicon devices. In-memory 
computing is one such computing paradigm where certain 
computational tasks are performed in place in the memory by 
exploiting the physical attributes of memory devices such as 
memristive devices. A promising application domain for in-
memory computing is deep learning and in this article we 
focused on a mixed-precision in-memory computing approach 
to training deep neural networks. The essential idea is to store 
the synaptic weights in a computational memory unit 
comprising crossbar arrays of memristive devices. During 
training, the matrix-vector multiply operations associated with 
the forward and backward passes are performed in place without 
the need to move around the synaptic weights. An additional 
conventional memory unit is used to store the accumulated 
weight updates in high precision and once they reach a threshold 
value, programming pulses are applied to the memristive 

devices to update the synaptic weights in place. This concept 
was validated using training simulations based on statistically 
accurate PCM models capturing the behavior of devices 
fabricated in 90 nm CMOS technology. A two-layer perceptron 
was trained to perform handwritten digit classification. A test 
accuracy of 98.31% was achieved which is only 0.11% lower 
than the equivalent classification accuracy achieved in high 
precision training. Subsequently, we presented several 
approaches to improve the computational capabilities of 
memristive devices. Multi-memristive synaptic architectures 
were shown to improve the conductance range as well as the 
stochasticity associated with the accumulative behavior. The 
concept of projected memory was presented that could mitigate 
the challenges associated with temporal variations in the 
conductance values. It was shown that it is possible to achieve 
remarkably high precision in-memory scalar multiplication 
(equivalent to 8-bit fixed point arithmetic) using projected PCM 
devices. Finally, we presented an overview of the system 
integration and software aspects of a DNN accelerator. A key 
challenge for the DNN accelerator is to provide a 
communication fabric that can efficiently move activations from 
one computational memory unit to another. A network topology 
built on a unit graph equal to complete graph K6 was presented 
that by construction is homomorphic to all state-of-the-art 
convolutional neural networks. The software stack comprises 
three essential components namely, the OS driver, the compiler 
and a library that allows user applications to directly perform 
inference or training.  

There is a significant effort towards the design of custom 
ASICs based on reduced precision arithmetic and highly 
optimized dataflow. However, one of the primary reasons for 
the inefficiency, namely the need to shuttle millions of synaptic 
weight values between the memory and processing units, 
remains unaddressed. The in-memory computing approach 
presented in this article addresses this key challenge. In 
summary, we believe that we will see two stages of innovations 
that take us from the near term, where the DL accelerators are 
built with conventional CMOS, towards a period of innovation 
involving the mixed-precision in-memory computing approach 
presented in this article.  
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