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Abstract
Computational memory (CM) is a promising approach for
accelerating inference on neural networks (NN) by using
enhanced memories that, in addition to storing data, allow
computations on them. One of the main challenges of this
approach is defining a hardware/software interface that al-
lows a compiler to map NN models for efficient execution
on the underlying CM accelerator. This is a non-trivial task
because efficiency dictates that the CM accelerator is explic-
itly programmed as a dataflow engine where the execution
of the different NN layers form a pipeline.
In this paper, we present our work towards a software

stack for executing ML models on such a multi-core CM
accelerator. We describe an architecture for the hardware
and software, and focus on the problem of implementing
the appropriate control logic so that data dependencies are
respected. We propose a solution to the latter that is based
on polyhedral compilation.

1 Introduction
As general-purpose architectures hit scalability limits, im-
portant applications such as machine learning (ML) turn to
specialized hardware to meet their energy and performance
requirements [1–9].
Computational memory (CM) contrasts traditional Von

Neumann architectures, which separate computation and
memory, by enabling memory to perform computations on
the data it holds. Specifically, technologies such as PCM
or Flash can be used to build crossbar arrays that, using
Kirchhoff’s laws, implement an analog Matrix-Vector mul-
tiplication (MxV), where the matrix data are stored in the
crossbar memory cells [10–12]. Such a crossbar can execute
an MxV in a single step, whereas digital logic typically re-
quires multiple steps. At the same time, combining compute
and storage in a single unit reduces communication which
constitutes the main challenge of data-intensive workloads.
This makes CM an attractive alternative for accelerating ML
workloads [12–22].

CM technologies such as PCM or Flash require significant
time to program (write). This renders the common practice
of using accelerators to execute one NN layer at a time [1, 4,
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6, 7, 23] impractical for these technologies due to the high
overhead of reconfiguring the crossbars, which might take
as long as a minute [11]. Instead, efficiency dictates that the
CM accelerator is configured once to implement a given NN.
After configuration, inference is performed by streaming
input data to the accelerator.

In this work, we discuss our approach towards a software
stack that targets such a multi-core CM chip for accelerating
deep learning inference at the edge [10, 24, 25], where each
core includes a crossbar that implements an analog MxV
operation. The accelerator follows a dataflow processing
model, where inference is executed as a pipeline formed by
the different NN layers.

Our ultimate goal is to build a software stack that enables
transparent use of the CM accelerator, and, at the same time,
guide hardware design so the accelerator can be better uti-
lized by software. Hence, we design the compiler and the
rest of the software stack in tandem with the accelerator.
Specifically, we prototype a Computational Memory Neural
Network Compiler (cmnnc) that aims to compile NN models
to be executed on the CM accelerator, and a simulator that
models such hardware and acts as the target platform.

A key problem we faced, that stems from the fact that the
NN network needs to be fitted into the accelerator, is gener-
ating the control logic between the CM cores that execute
different layers of the NN so that data dependencies are re-
spected. Because traditional accelerators do not require this
feature, existing ML compilers [26–28] do not have facilities
for tackling it. We address this challenge by using polyhedral
compilation techniques [29, 30] to represent data dependen-
cies and generate code for state machines that implement
the desired control.
In summary, the contributions of this work are: 1) We

propose an architecture for an inference CM accelerator and
the software stack for driving it. 2)We discuss an approach
for compiling NN models for the proposed CM accelerator,
focusing on using polyhedral compilation to express the
control logic between the CM cores so that data dependencies
are respected. To the best of our knowledge this is an open
problem, and we are the first to use polyhedral compilation
to tackle it.

While we believe that our approach is generally applicable
to dataflow architectures, for the sake of brevity and clarity
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our discussion assumes a specific architecture which is de-
scribed in §2. In §3 we present the proposed compiler, and
a solution for dealing with data dependencies. Finally, we
discuss related work in §4, and conclude in §5.

2 The Computational Memory Accelerator
We start by discussing a functional model of the hardware.
This model is meant as a vehicle for co-designing the hard-
ware interface with the software stack, and hence omits
many details about the hardware implementation.

The left side of Fig. 1 shows the various components of the
CM core. In addition to the crossbar (XBAR), the core also
includes a lightweight digital processing unit (DPU), and
local memory (MEM), which is, typically, a few kilobytes
of SRAM. The crossbar array implements an analog MxV
operation, where the matrix M data (typically, weights) are
stored directly in the crossbar’s memory cells, while vector
V (typically, activations) is loaded from the local memory.
It is worth noting that the crossbar has certain dimensions
reflected in the size of the MxV operations. We call this
dimension the width of the unit, i.e., a width of 64 means
that 𝑀 contains 64 × 64 elements, while input and output
vectors contain 64 elements.

The motivation behind this design is to run inference on
NNs by executing each different layer on a separate core,
thus forming a pipeline between the cores that resembles
the structure of the NN. The operation that we target to
accelerate (e.g., the convolution operation on convolutional
NNs) executes on the crossbar, while everything else (e.g.,
activation functions, pooling layers) executes on the DPU.

In Fig. 1, thick red lines and labels with black background
denote data operations while dashed lines and labels with
white background denote control operations. Execution pro-
ceeds in cycles. During a cycle, the local control unit (LCU)
loads the data of the input vector from the local SRAM to
the crossbar (➁, ❶) so that the analog MxV is performed.
When the MxV operation completes, its output vector is
made available to the DPU (❷), which then executes a se-
quence of instructions. During the execution, the DPU may
load and store data to the local SRAM (❸), and schedule data
transfers from the local SRAM to other cores (➃, ❹). The
data will become available on the remote core’s local SRAM
on the next cycle (❺).
The cores are organized in a pipeline, where the input

of one is the output of another. Hence, in many cases one
core has to wait until all necessary data from remote cores
become available before executing. To this end, the LCU
“snoops” the remote writes to SRAM (➀, ❺) and implements
a state machine that controls execution. Depending on this
state machine, the LCU may either do nothing or execute a
computation step. In the latter case, specific SRAM values
are loaded to the crossbar input (➁), the MxV operation is
executed, and then DPU executes its instructions.
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Figure 1. CM core and CM accelerator architecture.

The CM accelerator chip (right side of Fig. 1) includes a
number of interconnected cores, a global input/output buffer
(GMEM), and a global control unit (GCU). The GCU issues
DMA operations for transferring data between the external
(e.g., host) memory and the chip’s GMEM (➃, ❻). The GCU
also transfers data from (to) the GMEM to (from) cores that
act as input (output) nodes in the dataflow graph.
The hardware model of the CM accelerator also includes

the topology of the interconnect. A simple approach would
be to assume that all cores are connected with each other, ei-
ther via an all-to-all topology or by having a routing scheme
that enables all-to-all communication via message forward-
ing. Both of these approaches, however, have inefficien-
cies [31], and we, instead, decide to expose the interconnect
topology to the compiler so that it can optimize the mapping
of NN layers to CM cores accordingly. We represent the chip
topology as a directed graph, where an edge from one unit
to another means that the first can send data to the second.
An example of an effective interconnect topology for a CM
accelerator is described by Dazzi et al. [32].

3 Compiling NNs for the CM accelerator
Machine learning frameworks such as Tensorflow or Py-
Torch represent NNs as dataflow graphs where nodes are
computational operators (e.g., a matrix multiplication), and
edges are data dependencies between the operators. This
approach is well-suited for mapping these networks onto the
CM accelerator that also follows a dataflow execution model.
Inference is performed on pre-trained models that bundle
two types of data: the dataflow graph, and initialization data
for the operators (e.g., model weights) as produced by a sep-
arate training phase. Abstractly, the role of the compiler is
to map such a model (in our prototype we use the ONNX
format [33]) to the CM accelerator for execution.
We focus on convolutional NNs (CNNs), NNs based on

convolutions, which is where most of their execution time
is spent [34]. We accelerate these networks by mapping the
convolution to the crossbar’s MxV operation (see Listing 1),
and use the DPU for the remaining operations.
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1 # input (inp) shape: (D,IH,IW)
2 # filters (flt) shape: (FL,D,FH,FW)
3 # output (out) shape: (D,OH,OW)
4 def conv2d_mxv(inp ,flt ,out):
5 N = FD*FH*FW
6 m = flt.reshape ((FL,N))
7 for oh in range(OH):
8 for ow in range(OW):
9 v = inp[:,oh:oh+FH,ow:ow+FW]. reshape(N)
10 out[:,oh,ow] = matmul(m,v)

Listing 1. Convolution using an MXV operation (imple-
mented via Python NumPy).

From a software perspective, there are three phases in
using the CM accelerator: compilation, initialization, and
execution. Compilation uses the NN dataflow graph and a
hardware description of the accelerator (number of cores
and their properties, interconnect topology, etc.) as input,
and produces a configuration for each individual unit of the
accelerator (GCU, DPUs, LCUs). These configurations, bun-
dled together and serialized, initialize the accelerator. After
initialization, inference on the compiled model is executed
by streaming data to the accelerator.

Compilation is performed in two steps: partitioning, where
the dataflow graph is partitioned so that each partition is
mapped to a different CM core, and lowering, where the com-
piler processes each partition separately and produces the
configuration for each of the units of the corresponding core.
Note that the partitioning step must adhere to the constrains
imposed by the hardware. For example, local objects have to
fit into local memory, and if two dataflow nodes connected
via an edge are mapped to different cores, the cores should
also be connected in the hardware interconnect graph.
After compilation, the serialized configurations are used

together with the model weights to initialize the CM acceler-
ator. Model weights are used for programming the crossbar
arrays, but also to initialize objects that reside in accelerator-
local memories. Once the accelerator is initialized, the ex-
ecution phase may start where an external process (e.g., a
driver running on the host) passes descriptors for the input
and output data to the GCU.

Next, we discuss our approach for building such a compiler.
Our ideas are realized in a prototype implementation called
cmnnc (Computational Memory Neural Network Compiler).

3.1 Partitioning and Mapping
As discussed previously, the dataflow graph of the NN is
partitioned during the first phase of the compilation, and
each partition is mapped onto a different CM core on the
accelerator. We perform these two steps, namely partition-
ing and mapping, separately. For the first step, we enforce
two invariants: that each partition has at most one convo-
lution operator (or more generally speaking, one operator
executed using the crossbar), and that there are no cycles

CONV CONV ADD

Figure 2. Dataflow graph example with two convolutions
and an addition node.

in the partition graph. These invariants are not necessary,
but they simplify the compilation problem without limiting
applicability in practice. Consider, for example, the dataflow
graph of Fig. 2, with two convolution and one addition op-
erators. Following the two invariants presented above the
graph is partitioned as shown in the figure: based on the
first invariant we must create two partitions, one for each
convolution operation. Based on the second invariant, we
must bundle the addition operation with the right hand-side
partition; if we bundle it with the left hand-side partition, a
cycle is formed and the invariant breaks.
We perform the partitioning by iterating the dataflow

nodes in their topological order, and creating a new partition
whenever we encounter a convolution node. (This assumes
that there are no cycles in the dataflow graph, but this is a
common assumption, e.g., the ONNX format also disallows
cycles.) Given a set of partitions, edges of the dataflow graph
are either within the same partition or span multiple parti-
tions. The latter type of edges define the partition graph. We
map the partition graph to the CM accelerator, i.e., mapping
each partition to a CM core and each edge to a connection
in the interconnect topology, by expressing the problem as a
set of constrains in the Z3 SMT solver [35].

3.2 Lowering
Once the partitions are defined and mapped to CM cores,
the compiler produces the configurations for the GCU, LCUs,
and DPUs (lowering phase).
The problem of configuring the DPU, i.e., defining the

set of instructions to execute after the MxV operation, is
very similar to the problem solved by existing ML compiler
frameworks [26–28], and in practice we expect to address it
by developing an appropriate backend for such a framework
that targets the DPU instruction set.
Configuring the GCU and LCUs, however, cannot, to the

best of our knowledge, be addressed by existing ML com-
piler frameworks, even the ones that target specialized ML
accelerator hardware. The reason is that existing ML acceler-
ators typically provide offloading of certain operations, but
are not explicitly programmed as a dataflow engine, so such
functionality is not needed. As we discussed previously, how-
ever, explicitly mapping the NN execution into a dataflow
graph on the CM accelerator is necessary due to the high cost
of reconfiguring the crossbars. In the next paragraphs, we
describe the problem of configuring the LCU, and propose
a solution that utilizes polyhedral compilation. A similar
approach can be used for the GCU.
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Figure 3. Modeling dependencies between CM cores.

As is the case with existing frameworks, we represent
the inputs and outputs of operations as tensors, i.e., multi-
dimensional arrays. These arrays reside on the local memory
of the CM core that reads them. In the context of the LCU,
we are concerned with arrays that are written to and read
by different cores, i.e., the arrays that are defined by cross-
partition edges in the partition dataflow graph. For example,
in Fig. 2, the output of the first CONV operator on the first
partition is read by the operators of the second partition.

The LCU executes a state machine that snoops the remote
writes from other cores to the local objects and decides when
and how (e.g., what data to load to the crossbar) to trigger
the local computation. For example, if we consider Listing 1,
the first iteration can be performed only when the data in
inp[:,0:FH,O:FW] have been written (either by the GCU or
by another core). In other words, there is a read after write
(RAW) dependency that needs to be respected to ensure
correct execution. Next, we discuss how we can generate the
LCU state machine using the polyhedral model.

3.3 Enforcing dependencies via the polyhedral
model

To formally reason about data dependencies across opera-
tions and partitions, we use the polyhedral model, where
computations are represented as nested loops that access
multi-dimensional arrays. Since most nodes on NN dataflows
are linear algebra operators with tensor operands, the poly-
hedral model works well for such applications. Specifically,
we use the integer set library (ISL) [36, 37] to represent the
properties of computations as Presburger sets and relations.
ISL allows representing sets of integer tuples, and relations
that map elements of one set to another, efficiently, without
enumerating all their elements. ISL sets are used to model
iteration spaces, where each tuple consists of the values of
the induction variables of a loop nest, as well as array loca-
tions, where each tuple is a multi-dimensional index into the
array elements. ISL relations are used to expressed mappings
between such sets (e.g., data dependencies).
To illustrate these concepts, we consider two cores, each

executing its own loop nest and an array 𝑂 that the first
core writes to and that the second reads from (Fig. 3). (For
simplicity, we ignore the outermost loop, which is iterating
over input data and is generally unbounded.) Each core’s
loop nest defines an instance set: (𝑖1, 𝑖2, . . .) ∈ 𝐼 for core 1,

1 { CONV_MXV[oh,ow] -> inp[id,ih,iw] :
2 0 <= oh < OH
3 and 0 <= ow < OW
4 and 0 <= id < D
5 and oh <= ih < oh + FH
6 and ow <= iw < ow + FW }

Listing 2. Read access relation for Listing 1

and ( 𝑗1, 𝑗2, . . .) ∈ 𝐽 for core 2. The data each iteration reads
(writes) from (to) arrays defines the read (write) access re-
lation, which maps each iteration instance to one or more
array locations. For example, if 𝑅2 is the read relation of 𝐽
to 𝑂 (𝐽 → 𝑂), 𝑅2 includes a ( 𝑗 → 𝑜) pair iff iteration 𝑗 ∈ 𝐽

reads from location 𝑜 ∈ 𝑂 . Listing 2 shows the read access
relation for array inp of Listing 1, where tuples of values for
the induction variables (CONV_MXV[oh,ow]) are mapped to
locations on the input array (inp[id,ih,iw]) using inequal-
ity constrains. Similarly, if𝑊1 is the write relation of 𝐼 to 𝑂
(𝐼 → 𝑂), then𝑊1 includes a (𝑖 → 𝑜) pair iff iteration 𝑖 ∈ 𝐼

writes to location 𝑜 ∈ 𝑂 . We assume that object locations
are written to at most once, i.e., write relations are injec-
tive. Note that we do not (indeed cannot) make the same
assumption for read relations.
We can enforce dependencies by executing all iterations

of 𝐼 on core 1 before all iterations of 𝐽 on core 2, but this
is inefficient. Instead, we want to allow cores to execute
iterations in parallel as much as possible, forming a pipeline.
Hence, our goal is to compile a state machine that observes
writes from iterations in 𝐼 , and advances iterations in 𝐽 so
that they are only executed if all the data they read have
already been written. To this end, we use the ISL algebra to
compute relation S (𝑂 → 𝐽 ) that maps observed writes in
𝑂 , to the maximum (based on execution order) iteration in 𝐽

that can be executed. We present the steps for computing S
in ISL in Appendix A.

Using relation S, we can generate code for the LCU state
machines. Each cross-partition edge in the dataflow graph
defines an array shared by two partitions: its writer (source)
and its reader (destination). We compute the access relations
(read and write) for each array based on the operator type
(e.g., convolution) and parameters (e.g., convolution kernel
size, padding, etc.). Note that we can combine edges with
the same source and destination, so that only one array is
used. For example, for the graph of Fig. 2 we use a single
array by combining the read access relations of the CONV and
ADD node. For every partition, we compute the relation S for
every object read. Using these relations, we use the ISL AST
facilities to generate code that implements the LCU state
machine.

3.4 Prototype
We realize our approach in a prototype implemented in
Python, which aims to compile ONNX models and execute
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them in a CM accelerator simulator that acts as the target
platform. While still work in progress, our implementation is
available as open source in https://github.com/IBM/cmnnc.

3.5 Further Challenges
While we believe our approach shows promise, it is still at
the early stages, with missing functionality before we can
claim a full-fledged solution. Here, we highlight some of the
main challenges, which we plan to address in future work.
In our prototype, we program the LCU state machine by

generating arbitrary Python code (specifically, we generate
a Python AST using the ISL AST facilities, which we then
compile to Python bytecode). This works well for our sim-
ulation, because it enables flexibility to experiment, but a
hardware implementation might not be able to afford the
ability to execute arbitrary code on the LCU. Hence, it might
be necessary to implement a more restrictive interface for
configuring the LCU (and also the GCU) so that the depen-
dency tracking state machine can be efficiently implemented
in hardware, while allowing the compiler to generate the
appropriate configuration for arbitrary NN dataflow graphs.

Most of the challenges of a software stack for a CM acceler-
ator stems from the high cost of reprogramming the crossbar
arrays. In a traditional accelerator, if the width of a hard-
ware unit (e.g., GEMM) cannot support the full operation, the
software can just break the operation in sub-operations and
issue them separately. In contrast, the CM accelerator has to
be configured so that the implemented dataflow execution
graph deals with this limitation at initialization time. Hence,
the NN dataflow graph needs to be transformed so that it
is compatible with the CM accelerator properties [38, 39]
(e.g., performing quantization [40] or breaking up operations
that do not fit into individual CM cores), while, at the same
time, ensuring that the inference performance does not take
a hit. As a first step to address these challenges, we plan to
quantify their effect by executing and evaluating existing
CNNs in our simulator.

4 Related work
Digital NN accelerators Most hardware NN accelerators
work by considering one NN layer at a time, and splitting its
execution among multiple blocks that can be offloaded to the
device [1, 4, 6, 7, 23]. Frequently, these accelerators follow
a dataflow (spatial) architecture, e.g., by building a matrix
multiply unit as a systolic array [1], or by executing a 2D
convolution into an array of interconnected processing ele-
ments [4]. Our approach, instead, fits multiple NN layers to
the accelerator and implements a dataflow execution model
at a coarser granularity (inter-layer instead of intra-layer).
One of the key challenges that recent NN accelerators try to
address is how to organize the computation to maximize data
reuse within a given memory hierarchy across the different
options of reusing input data, reusing weights, and reusing

intermediate results [2, 5, 41, 42]. On that spectrum, the CM
accelerator described here is an extreme because the weights
are directly encoded into the crossbars.

CM NN accelerators There is extensive work in accelerat-
ing NNs using CM [13–19]. Prime [22] is a CM accelerator
based on resistive memory with a software/hardware in-
terface similar to the one described here, as is ISAAC [20],
where control vectors for driving state machines are briefly
mentioned but no precise description is given. These works
identify the problem of implementing logic for respecting de-
pendencies, but provide no solution on how the compiler can
generate this logic which is the main focus of our work. In-
deed, we are not aware of any works that tackle this problem.
PUMA [12] implements a CM accelerator using memristor
crossbars, and defines an ISA [21] for programming the ac-
celerator. In this case, the dependencies are enforced not by
a state machine, but by respecting the order of the generated
instruction sequence.

ML compiler frameworks Initially, ML frameworks used
hand-crafted specialized routines for implementing ML oper-
ators for each different hardware target (CPUs, GPUs, accel-
erators). A number of ML compiler frameworks have since
been develop that aim to automatically generate code for
these operators, but also perform cross-operator optimiza-
tions [26–28]. These frameworks target traditional accel-
erators, and focus on offloading parts of the NN dataflow
graph and exploiting data parallelism rather than pipeline
parallelism which our work focuses on.

Polyhedral compilation Polyhedral compilation enables
reasoning about properties of code in the form of nested
loops with affine bounds, and have been used for many ap-
plications including optimizations [43, 44], accelerator map-
ping [45], program verification [46], modeling caches [47, 48],
and computing bounds on IO complexity [49]. Indeed, many
compiler frameworks that target NN workloads utilize poly-
hedral compilation techniques [50–53]. Theseworks are com-
plementary to ours in that they deal with transforming and
scheduling loop nests so that they can be executed efficiently,
while approach targets generating control state machines
for respecting data dependencies.

5 Conclusion
In this paper, we presented an initial approach towards a CM
accelerator and its corresponding software stack that targets
efficient inference on NNmodels. We focus on the problem of
explicitly programming the accelerator as a dataflow engine
and discuss how the compiler can generate control state ma-
chines that ensure that data dependencies during pipelined
execution are respected.

https://github.com/IBM/cmnnc
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A Computing S using ISL
Here, we present the details of how to compute the relation
S using ISL. Assuming an iteration space 𝐼 that writes an
object𝑂 , and an iteration space 𝐽 that reads it (§3.3), we want
to compute relation S (𝑂 → 𝐽 ) that maps observed writes
in 𝑂 , to the maximum iteration in 𝐽 that can be executed.

A.1 Background
For completeness, we briefly present the ISL operators that
we use. We make some simplifications for brevity, and we
refer the reader to the ISL documentation [36, 54] for a com-
plete discussion.

We represent iteration spaces (𝐼 , 𝐽 ) and object locations (𝑂)
as sets of integer tuples. We also consider relations which
map elements of one set to another. For example, a relation
𝐼 → 𝑂 consists of pairs (𝑖 → 𝑜) such that 𝑖 ∈ 𝐼 and 𝑜 ∈ 𝑂 .
The domain 𝑑𝑜𝑚(𝑅) of a relation 𝑅 is the set defined by

the first element of the pairs.

𝑑𝑜𝑚(𝑅) = 𝑖 : ∃ 𝑗 : (𝑖 → 𝑗) ∈ 𝑅

The inverse of a relation 𝑅, R−1 includes the same tuple
pairs as 𝑅, but with their order reversed:

𝑅−1 = { ( 𝑗 → 𝑖) : (𝑖 → 𝑗) ∈ 𝑅 }
Relations 𝐴,𝐵 can be composed as B(A) (or 𝐵 after 𝐴):

𝐵(𝐴) = {𝑖 → 𝑗 : ∃𝑘 : (𝑖 → 𝑘) ∈ 𝐴 ∧ (𝑘 → 𝑗) ∈ 𝐵}
Integer tuples can be ordered lexicographically. We use ≺,

≻, ⪯, ⪰ to represent this order.
The lexicographical maximum lexmax(R) of a relation

𝑅 is a subset of 𝑅, where for pairs in 𝑅 with the same first
element, it only keeps the pair with the lexicographically
maximal second element.

lexmax (𝑅) = {(𝑖 → 𝑗) : (𝑖 → 𝑗) ∈ 𝑅

∧ ∀(𝑖 ′ → 𝑘) ∈ 𝑅 : 𝑖 = 𝑖 ′ ⇒ 𝑘 ⪯ 𝑗}

A.2 Computing 𝑆
Relation𝑊 −1

1 (𝑂 → 𝐼 ) maps each array location to the itera-
tion in 𝐼 that writes it. Relation K pairs read iterations 𝑗 ∈ 𝐽

write iterations 𝑖 ∈ 𝐼 based on RAW dependencies. That is, if
( 𝑗 → 𝑖) ∈ K , iteration 𝑖 writes locations read by iteration 𝑗 :

K :=𝑊 −1
1 (𝑅2) (𝐽 → 𝐼 )

Next, we compute relation L that pairs every read iter-
ation 𝑗 ∈ 𝐽 to the last write iteration 𝑖 ∈ 𝐼 that satisfies all
dependencies for all iterations up to and including 𝑗 . In other
words, after 𝑖 is executed, the reader can safely execute all
iterations until 𝑗 . Note that the above assumes an order be-
tween iterations. We assume iterations are executed in their
lexicographical order, as is normally the case. We compute
L as follows. First, we compute the domain 𝐷 of K .

𝐷 := dom (K) (𝐽 )
Next, we use the lexicographically-greater-than-or-equal

relation on sets operations (>>=) to compute relation 𝐷 ′

such that each iteration 𝑗 is mapped to all iterations 𝜁 that
do not succeed it (𝜁 ⪯ 𝑗 ).

𝐷 ′ := 𝐷 >>= 𝐷 (𝐽 → 𝐽 )
We can apply relation 𝐷 ′ after K , which results in a rela-

tion that pairs each read iteration 𝑗 to every write iteration
𝑖 that writes data read by iterations 𝜁 ⪯ 𝑗 . We compute L
using the lexmax operator, which will only keep the last
write iteration after which all iterations 𝜁 ⪯ 𝑗 can be safely
executed.

L := lexmax (K(𝐷 ′)) (𝐽 → 𝐼 )
Applying𝑊1 after K , results in relation M, which if re-

versed maps locations written by the writer loop, to the max-
imum iteration we can execute on the reader loop. Because
a single write might be mapped to multiple read iterations,
we use the lexmax operator to keep the maximal (i.e., latest).

M :=𝑊1 (L) (𝐽 → 𝑂)
S := lexmax

(
M−1) (𝑂 → 𝐽 )
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