
Modeling NICs with Unicorn

Pravin Shinde ∗ Antoine Kaufmann Kornilios Kourtis ∗ Timothy Roscoe
Systems Group, ETH Zurich

Abstract
NICs are increasingly complex and diverse, offering a wide range
of hardware functionality to aid network protocol processing. Har-
nessing the power of NIC hardware requires the ability to control
and reason about a variety of different feature sets in the network
stack. Towards this goal, we propose Unicorn, a language for de-
scribing modern NICs. Unicorn offers a simple set of abstractions
for modeling both NIC functionality and the state of a protocol
stack. To evaluate its expressivity and potential, we present a non-
trivial model for the Intel i82599 10GbE NIC, and an algorithm that
uses graph embedding to optimize the use of NIC hardware in the
network stack.

1. Introduction
We present Unicorn, a language for describing the capabilities of
modern network controllers (NICs) which can be used, online, to
maximize the extent to which the OS network protocol stack can
exploit whatever hardware acceleration the NIC provides.

Unicorn is part of Dragonet [16], a new network stack motivated
by two related hardware trends: (i) the growing complexity (and
diversity) of modern networking hardware, with increasing func-
tionality provided in a wide variety of ways, and (ii) the increasing
parallelism of modern hardware: individual cores are not getting
faster, and (with the possible exception of software radios) network
protocol processing has limited parallelism. Moreover, with the end
of Dennard scaling [2], CPU designers will increasingly turn to
specialization and heterogeneity in the search for increased perfor-
mance, including network processing.

Dragonet addresses the problem of how to best exploit a wide
variety of NIC hardware functionality without writing a large quan-
tity of hardware-specific and/or policy-specific C code. It is based
on two kinds of dataflow graphs:

A Logical Protocol Graph (LPG) captures the state of an OS
protocol stack at a point in time at the level of individual connec-
tions or flows. An LPG describes the processing that is required for
each individual packet which might be sent or received by the sys-
tem, and can be derived from the current OS protocol stack state.

∗ Pravin Shinde and Kornilios Kourtis are financially supported in part by
Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PLOS ’13, November 03-06 2013, Farmington, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2460-1/13/11. . . $15.00.
http://dx.doi.org/10.1145/2525528.2525532

In contrast, a Physical Resource Graph (PRG) explicitly cap-
tures the processing functionality available on a given NIC, and is
provided in advance by the system developer or (ideally) the hard-
ware vendor. Broadly speaking, Dragonet optimizes use of hard-
ware facilities by applying appropriate embedding policies, such as
embedding as much of the PRG as possible into the LPG.

The contribution of this paper is to show that a language based
on a small set of simple abstractions (described in Section 3) is suf-
ficient to model the capabilities of sophisticated modern NICs. As
an illustrative example, we demonstrate that Unicorn is powerful
enough to model the Intel 82599 10GbE adapter (i82599) and we
discuss an embedding algorithm that maximizes use of NIC hard-
ware resources in the network stack (Section 4).

2. Background
Unicorn addresses the problem of writing system software to take
full advantage of NIC hardware. NICs have been highly complex
for some time, however to date the challenge of exploiting this
hardware has been addressed by creating a common, fixed set of
abstractions covering all available NIC features.

As we argued recently [16], this can lead to rejecting hardware
incompatible with the given abstractions. For example, the SYN
filter on the Intel 82599 10GbE adapter [5] requires kernel changes
to use in Linux, since it does not fit the n-tuple filter abstraction
assumed by the rest of the kernel [13]. Other OSes, such as Win-
dows, go to great lengths to provide API abstractions for all avail-
able hardware features (e.g. [12]). However, in both approaches, the
policy of when and how to exploit features must usually be config-
ured manually by application programmers or system administra-
tors, rather than automatically based on workload.

The challenge here is the programming of, and late-binding of
functionality to, heterogeneous hardware. However, the problem is
different to using heterogeneous cores, whether GPUs [7, 14] or
others [18]. NICs mostly provide fixed hardware functions rather
than programmable cores, and different NIC models, even within a
vendor, offer very different features and configuration options1.

Our approach is to replace fixed abstractions with a language
interface, based on two key ideas: (i) expressing both flow-level
protocol state and NIC hardware as dataflow graphs (the LPG and
PRG respectively), and (ii) reducing the problem of exploiting spe-
cialized hardware to graph embedding. Unicorn is a language for
specifying the PRG for a given NIC, but the underlying data model
it embodies represents both PRGs and LPG. For offline prototyp-
ing and testing purposes we use Unicorn syntax to manually write
LPGs, though in a real implementation the LPG will be derived
from the protocol stack state.

The LPG has two equivalent interpretations. The forward direc-
tion (from sources to sinks) represents the individual computations
for processing a packet, as in Click [8]. The reverse direction cap-

1 A few NICs do contain fully-programmable cores, such as [4]. Supporting
such devices in a network stack is out of scope of this paper.

Q1 out IsEth
T

F

EthValidType
T

F

EthValidUnicast
T

F

EthValidBcast
T

F

EthValidCRC
T

F

EthValidSrc
T

F

EthClassifyL3 out IsIPv4
T

F

IPv4ValidCsum
T

F

IPv4ValidProt
T

F

AND
T

F

AND
T

F

AND
T

F

AND
T

F

Dhcpd

NamedOR
T

F

IsUDP
T

F

UDPValidCsum
T

F

UDPValidSrc
T

F

UDPValidDst
T

F

UDPValidLen
T

F

OR
T

F

UDP/*:53
T

F

UDP/*:67
T

F
OR

T

F

AND
T

F

ARPReq
T

F

Figure 1: LPG example for receiving network packets.

tures dependencies between computations and is used for determin-
ing which NIC features should be used. Dragonet works by main-
taining an embedding of the PRG in the LPG at runtime as network
connections come and go, by assigning LPG nodes to PRG nodes
(NIC fixed functions). The remainder of the LPG is then imple-
mented in software (not necessarily as a dataflow graph).

There is a long tradition of hardware description DSLs for OS
development. “Device trees” describing platform configuration are
widely used in modern operating systems like Linux, particularly
for system-on-chip hardware [9]. Research DSLs like Devil [11]
and Termite [15] help automate hardware programming by gener-
ating correct-by-construction driver code. Unicorn is complemen-
tary: it does not provide a hardware access mechanism, but instead
provides a semantic description of the available functionality.

The dataflow model of computation also has a long history,
and has recently been applied in parallel programming [1, 6,
14]. Dataflow representations of network processing are used in
Click [8] and the x-kernel [3]. Unicorn differs from these systems
by having a set of primitive node types which facilitate both auto-
mated embedding of a PRG in the LPG, and semantics-preserving
transformations on the LPG.

Finally, other novel language approaches to protocol implemen-
tation like Melange [10] could be used alongside Unicorn to facili-
tate implementing the software part of the LPG.

3. UNICORN
Unicorn is a domain specific language for expressing the LPG
and PRG so that they can be both easily generated from concise
descriptions, and effectively manipulated by appropriate algorithms
that implement the embedding and possibly other operations. Our
goal is for the Dragonet stack to use representations of the PRG
(along with the associated device driver) and LPG internally when
placing packet processing functionality at runtime.

The Unicorn language is actually two different concepts: (i) a
concrete syntax for writing descriptions of NICs, and (ii) an ab-
stract model for representing Dragonet dataflow graphs, both PRGs
and LPGs. The concrete syntax is intended for only writing PRGs
based on descriptions found in NIC vendor documentation, though
we also use it to write test LPGs for development and debug pur-
poses. Online, however, the Dragonet protocol stack itself will
maintain the LPG as connections come and go. Since there is a
close correspondence between the concrete syntax and abstract
model, however, we will mostly conflate them in this paper.

The primary challenge motivating Unicorn is NIC diversity.
We make only one assumption about NICs: that it is possible
to represent their functionality as a dataflow graph that can be

matched against the LPG. The names of graph nodes used in a
PRG to describe a NIC must correspond to those used to represent
an LPG. Contrarily to traditional NIC driver interfaces based on
function hooks, LPG allows implementing arbitrary parts of the
network stack in the NIC hardware or in the NIC driver.

We build our graph models with a small set of abstractions as
basic building blocks. These abstractions are the minimum infor-
mation required to transform and embed LPGs and PRGs. The core
of Unicorn consists of three node types: function nodes (F-nodes),
configuration nodes (C-nodes) and logical operator nodes. F-nodes
combined with logical operators capture the execution flow and de-
pendencies of protocol processing, while C-nodes capture the con-
figuration options of a NIC.

These basic building blocks are not sufficient to fully model
a NIC: for example, reasoning about performance requires more
information than the PRG layout. To avoid making assumptions
about NICs, we handle these cases by annotating nodes with at-
tributes. Although we expect to build common abstractions for
many of these attributes, they are external to the basic node model.

3.1 Logical Protocol Graph
Fig. 1 shows an example (partial) LPG for receiving packets that
starts from the NIC hardware queue (Q1) on the hardware/software
boundary and handles Ethernet, IP, and UDP processing. In this
particular example, two applications, named and dhcpd, are waiting
for packets on UDP ports 53 and 67 (depicted by nodes UDP/*:53
and UDP/*:67) respectively. We next discuss how we build our LPG
models.

Function nodes (F-nodes) F-nodes are the basic components of
our graphs. They represent individual packet computations and are
labeled based on the computation they implement. An F-node’s out-
puts are grouped into ports. Protocol processing is modeled by each
F-node applying a computation to the packet and subsequently en-
abling a single output port. Enabling an output port, effectively ac-
tivates a set of F-nodes as defined by the port’s edges. For exam-
ple, the second LPG node is labeled IsEth and has two ports: the
port labeled T (true) has multiple outputs leading to the next stages
of packet processing, whereas the port labeled F (false) has a sin-
gle output leading to the packet being dropped, which we omit for
brevity.

Logical operators F-nodes have a single input. To handle cases
where enabling an F-node might depend on the output of multi-
ple other F-nodes we use logical operator nodes (AND/OR). For each
operand, logical operators have two inputs (true and false) and only
one of them can be enabled. Hence, each operand typically corre-
sponds to a node and each of the operand’s inputs to a different

port of that node. To simplify our model and the graph representa-
tions, we assume that only boolean F-nodes, i.e., nodes that have
exactly two output ports: T and F, are connected to logical opera-
tors. Additionally, instead of drawing two edges from the boolean
node to the logical operator, we draw a single double line. The log-
ical operators have the usual semantics and may be short-circuited.
In the LPG of Fig. 1, UDP header field checks (e.g., UDPValidDst,
UDPValidSrc, etc.) are fed to an AND node because all fields need to
be valid. Conversely, nodes EthValidBcast and EthValidUnicast
are combined using an OR node to check whether this packet has a
valid Ethernet destination address.

In our model, packet processing progresses by enabling differ-
ent F-nodes until a terminal node is reached. At any given time, the
state of the packet is defined by the paths of the enabled F-nodes.
On the receive side, F-nodes typically inspect the packet to identify
its proper destination. On the send side, F-nodes typically build the
appropriate packet headers so that the packet can be sent over the
network.

Conceptually, each F-node applies a computation to the packet.
Since ports might include multiple outputs, our LPG representation
defines a partial order rather than a full order for these computa-
tions. Hence, there are multiple serialized execution schedules that
can be generated from the same LPG, all of which have the same
output. We do not reduce the partial order to a full order, so that we
are able to match F-nodes to NIC fixed functions regardless of what
order the NIC enforces, as long as it is compatible with our partial
order. Another benefit is that it allows to model possible perfor-
mance optimizations such as parallel execution, although in such a
case, care must be taken to ensure that concurrent F-node execution
does not cause inconsistencies.

Using the receive path as an example, packet data needs to be
passed to user-space via a socket. In Fig. 1, two boolean nodes
(UDP/*:53, UDP/*:67) match packets against network flows belong-
ing to specific applications. In practice, these nodes most likely are
implemented together as a single lookup table.

In our description so far, the only state we consider is the path
followed in the graph and the packet itself. To implement a protocol
such as TCP, however, additional state is required. This state might
be per network connection (e.g., the TCP control block), or global
for the whole interface (e.g., for implementing traffic shaping).
We consider new packets generated for processing (e.g., ACKs) a
part of this state. The computations that are modeled by F-nodes
potentially need to access and modify this state. Our current model
assumes that each packet is processed atomically, so the state can
be safely accessed by F-nodes as needed. In practice, however, it
is important that packets can be processed in parallel to exploit
multiple cores. We plan to address this in our implementation by
dividing and possibly replicating the state appropriately, allowing
efficient and scalable access to it.

3.2 Physical Resource Graph
A PRG can be viewed as a high-level interface between the generic
OS protocol stack and the driver code which accesses the NIC hard-
ware. While the LPG captures an abstract view of the packet pro-
cessing dataflow, the PRG models the fixed-function computations
performed by the NIC. We write PRGs based on datasheets, using
the same abstractions as for LPGs.

A PRG node P having the same label as an LPG node L implies
that P implements L’s function and thus L can be mapped to P. A
PRG example is shown in Fig. 2.

Ideally, expressing the protocol in a fine-grained manner via
the LPG should allow matching every possible hardware function
offered by the NIC for this protocol. In practice, however, creating
a fully future-proof LPG is very challenging, while defining what
is part of the logical protocol state and what is not is ultimately a

matter of taste. Thus, we do not assume that every PRG node can
be matched against an LPG node. Unknown PRG nodes (those not
in the LPG) represent NIC-specific functionality which is not a part
of the logical protocol representation.

Configuration nodes (C-nodes) Modern NICs offer rich configu-
ration options that can drastically vary the NIC’s behavior. We rep-
resent NIC configuration and how it affects the resulting PRG using
C-nodes. C-nodes are PRG nodes that represent unconfigured parts
of the NIC. A C-node is configured by applying configuration val-
ues to it, which results in the C-node being replaced by a new set of
nodes and edges (i.e., a subgraph). The new edges are restrained by
the original C-node edges. For example, if there is no edge between
a node n and the C-node, then the new edges cannot include n.

More formally, assuming a graph G (typically the PRG) with
vertices G.v and edges G.e, a generic C-node x ∈ G.v consists of a
configuration space Cx and a function fx that maps each point in the
configuration space c ∈ Cx to a subgraph Γ. Γ consists of vertices
Γ.v and edges Γ.e, and is subject to a number of constrains: First,
vertices in Γ.v should not already exist in G (Γ.v∩G.v = ∅). Second,
if Ix are the nodes that point to x (Ix = {i ∈ G.v | (i, x) ∈ G.e})2 and
Ox are the nodes pointed by x (Ox = {o ∈ G.v | (x, o) ∈ G.e}), then
each edge in Γ.e should start from a node in either Ix or Γ.v and
point to a node in either Ox or Γ.v (∀(j, k) ∈ Γ.e : (j ∈ Ix∪Γ.v)∧(k ∈
Ox ∪ Γ.v)). When applying a configuration c to a C-node x in a
graph G, G changes in two ways: (i) x is removed and vertices Γ.v
are added to to G.v (ii) x’s edges are removed and edges Γ.e are
added to G.e.

In practice, we model most of our configuration nodes using
simple C-nodes, i.e., nodes that select one of their output ports
based on the configuration value. For example, the SYN filter func-
tionality of the i82599 is configured using two simple configuration
nodes: CSynFilter, that enables or disables the filter, and CSynOut
that selects an output queue for the filter.

C-nodes aim to address the diversity of modern and future NICs
and are intended for algorithms that explore and evaluate different
configuration options. C-nodes with a small configuration space
(e.g., a single register that enables or disables a NIC feature) can
be naively handled by these algorithms using exhaustive search.
Exhaustive search, however, is highly inefficient for C-nodes with a
very extensive configuration space (e.g., configuration for mapping
network flows to hardware queues). These cases typically require
additional a-priory knowledge to reduce the search space. When
steering network flows to hardware queues, for example, the space
can be reduced by only considering filters that match network flows
corresponding to active connections.

An alternative approach to C-nodes would be to enforce a com-
mon abstraction on the PRG level that simplifies the search in the
configuration space. However, the diversity of NICs makes it dif-
ficult, if not impossible, to devise a common and future-proof ab-
straction for the configuration space without substantially sacrific-
ing flexibility. Instead, we argue for exposing the full NIC config-
uration space on the PRG. This allows implementing NIC-specific
policies that can exploit all capabilities of a NIC, but does not ex-
clude building common abstractions on top of the low-level PRG
interface in a similar manner as common NIC drivers implement an
OS-specific interface.

3.3 Attributes
The abstractions we have presented so far capture protocol process-
ing in terms of individual computations. As we show in Section 4,
these abstractions are sufficient for operations like the embedding
that maximizes the use of hardware resources in the NIC. More ad-

2 for simplicity, we ignore that in actuality our edges originate from ports
rather than vertices.

IsEth
T

F

EthValidCRC
T

F

EthClassifyL3_
ipv4

other

HWDrop

IPv4Checksum_ out

CSynFilter
true

false

IsIPv4
T

F

IPv4ValidCsum
T

F

HWIsTCPSyn
T

F

HWIsUDPDest53
T

F

CSynOut

Q0

Q1

Q2

Q0 out

Q1 out

Q2 out

Figure 2: A partial PRG, modeling the receive side of the Intel i82599 10GbE adapter.

vanced reasoning (such as queuing models for performance), how-
ever, requires more information which we add by annotating nodes
with attributes. As Unicorn matures, we expect to define common
abstractions for many of these attributes. In the next paragraphs, we
discuss some of the use-cases.

F-node implementation F-nodes in their pure form are not as-
sociated with a specific implementation. This leads to ambiguity
when trying to model graph execution that includes both hardware
and software F-nodes because it is impossible to distinguish be-
tween them. Hence, we annotate F-nodes with an implementation
tag. For instance, an F-node for checksum calculation can be anno-
tated to depict an implementation in NIC hardware, in the driver, or
even in a hardware accelerator.

Modeling performance An important Dragonet goal is to enable
reasoning about network stack performance, by annotating nodes
with metrics such as CPU cycles for predicting CPU utilization
or latency costs for predicting the latency of processing a packet.
Additionally, attributes can be used for modeling F-nodes that
maintain queues of packets, such as TCP segmentation offload
implementations in hardware (e.g., TSO) or in software (e.g., GSO
in the Linux network stack). These nodes offer trade-offs between
latency, throughput, and CPU utilization. Subsequently, reasoning
about performance requires the ability to describe how these nodes
operate (e.g., under what conditions they forward the packet instead
of storing it).

Protection Traditional NICs perform unprotected DMA trans-
fers, so the OS must mediate all application send/receive oper-
ations and copy data between user-space buffers and those used
for DMA. Advanced NICs that target high-performance [17] offer
protected DMA operations using IOMMUs that allow bypassing
the OS and zero-copy communication. Annotating software/NIC
boundaries accordingly can allow Dragonet to adapt to such func-
tionality where it is supported by the NIC.

3.4 A first Unicorn implementation
We have prototyped Unicorn using Haskell’s QuasiQuotes as an
embedded DSL in Haskell. This is highly convenient for trying out
LPG models for protocol processing, PRG models for NICs, and
embedding algorithms. We also use the same setup to implement
network processing using a simulator that processes packets by ex-
ecuting the graph. Dragonet will reimplement the finalized abstract
model to achieve acceptable performance (e.g., using C).

An example is shown in Fig. 3. Most model objects are defined
using a keyword followed by an identifier and a body in braces.
Keywords have the expected semantics (e.g., node defines F-nodes,
config defines C-nodes, and graph defines graphs). Outputs are
defined using ports that connect to a list of nodes. For example,
port ipv4 of node EthClassifyL3_ connects to two nodes: IsIPv4
and IPv4Checksum_. Attributes are defined using the attr keyword.
An explanation of IsIPv4’s software attribute is given in §4.

Simple C-nodes are defined using a set of ports that forms
their configuration space. Configuring a simple C-node statically
defines a port for the node’s output. For example, CSynOutput can

1 graph prg {
2 node HWDrop { }
3

4 node EthClassifyL3_ {
5 port ipv4[IsIPv4 IPv4Checksum_]
6 port other[.CSynFilter] }
7

8 boolean IsIPv4 {
9 attr "software"

10 port true[]
11 port false[] }
12

13 config CSynOutput {
14 port q0[Q0]
15 port q1[Q1]
16 port q2[Q2] }
17 }

Figure 3: Unicorn snippet for PRG shown in Fig. 2.

be configured with q0 to select the first queue. Generic C-nodes are
implemented using an additional Haskell function that implements
the functionality of fx as described in §3.2.

The constructs discussed above constitute the basic core of the
language. We are currently adding syntactic sugar for avoiding
boilerplate code, support for more intuitive error messages, and
generally simplifying programming. For example, our prototype
supports boolean nodes, defined using boolean instead of node.
Boolean nodes are constrained to a specific structure: they are
expected to have exactly two output ports: true and false.

4. Modeling the i82599 with UNICORN
We are currently evaluating Unicorn by modeling different NICs
and experimenting with embedding algorithms. Here we discuss
modeling the i82599 NIC [5]. A part of i82599’s receive path PRG
is shown in Fig. 2. We focus our discussion on two interesting fea-
tures of i82599 from a modeling perspective: hardware checksum
calculation and hardware queues.

Hardware checksum calculation The i82599 supports hardware
checksum calculation for a number of different protocols (e.g., Eth-
ernet, IPv4 and TCP). However, modeling complications arise. On
the receive side, for example, the NIC supports classifying IPv4
packets and verifying the IPv4 checksum. The results of these com-
putations are stored in the descriptor passed to the network stack,
making a minimal amount of software processing necessary. To
handle these cases, we add software nodes in the PRG. This al-
lows expressing dependencies from PRG nodes to software nodes,
capturing any additional device-specific software functionality re-
quired from the driver. Hence, the IsIPv4 and IPv4ValidCsum in
i82599’s PRG are software nodes that model the checking of spe-
cific flags in the descriptor, rather than the full check. We denote
software PRG nodes with dashed boxes in our graphs.

Hardware queues Hardware queues are a standard feature of
modern NICs. They provide multiple receive and transmit descrip-

L:AND
F

T
L:AND

F

T

L:AND
F

T

L:AND T

L:AND T

L:Dhcpd

L:Named
L:UDP/*:53 T

L:UDP/*:67 F

L:EthValidBcast
F

T

L:OR
F

T

L:ARPReq

L:EthValidSrc
F

T

L:EthValidType T L:EthClassifyL3

L:EthValidUnicast
F

T

L:IPv4ValidProt
F

T

L:OR T
L:IsUDP

F

T
L:UDPValidCsum

F

T

L:UDPValidDst
F

T

L:UDPValidLen
F

T

L:UDPValidSrc
F

T

L:OR T

L:SW out

P:IsIPv4 T

P:IPv4ValidCsum
F

T

P:Q1 out

Figure 4: Software nodes of an embedded graph that results from embedding queue Q1 of the PRG shown in Fig. 2 to the LPG shown in
Fig. 1. The SYN filter is assumed disabled.

tor queues to the OS, as well as facilities for steering packets into
them (filters). Queues expose multiple instances of the NIC to the
OS and are typically used to improve the scalability of the network
stack with techniques such as RSS, or to improve quality of ser-
vice for specific network flows. There are multiple different filter
mechanisms and each NIC offers its own variant.

The i82599 provides a wide range of different filters, each with
possibly different configuration options. Two examples are 5-tuple
and SYN filters. The former are specified by a 5-tuple that includes
the protocol, the source and destination IP address, and the source
and destination port. Any field in the tuple can be masked. SYN
filters, when configured, match TCP packets whose SYN flag is set.
In Fig. 2, a 5-tuple filter is configured to match UDP packets with a
destination port equal to 53 (HWIsUDPDest53) and forward them to
Q1. Currently, we model 5-tuple filters using generic C-nodes. The
ordering in which the filters are applied needs to be encoded in the
PRG so that the resulting model is valid. In our example, the SYN
filter will be matched before matching the 5-tuple filters.

In the presence of multiple queues, the network stack is re-
sponsible for multiplexing and demultiplexing packets between the
queues and the application network flows. In the general case, all
flows can interact with all queues. The explicit descriptions pro-
vided by the Unicorn models allow Dragonet to reason about which
flows interact with which queues and specialize the network stack
accordingly. A simple, yet common example is exclusively map-
ping a network flow to a queue for providing quality of service
(QoS).

Reasoning about how flows are mapped to queues requires in-
teractions between LPG nodes that represent flows and PRG nodes
that represent filters. Our approach is based on calculating con-
straints for LPG flow nodes, by examining the set of node/port
combinations that dominate each flow node. Constraints act on
LPG flow nodes by constraining the set of output ports that can be
enabled. As the graphs become complicated (e.g., multiple paths
reaching a hardware queue via an OR node), reasoning about flows
and queues becomes challenging and computationally unafford-
able. Nevertheless, we believe that there are cases that do not fall
into this category and can benefit from such an analysis (e.g., when
an a queue is configured to serve a single network flow).

An additional difficulty arises because a number of hardware
features can be configured on a per-queue basis. This means that the
parts of protocol processing done by the hardware and with it the
configuration of software protocol processing varies across queues.
Also knowledge about the possible flows on a queue can allow sim-
plification of protocol processing (e.g., assuming a queue only re-
ceives UDP packets, TCP protocol processing can be dropped). We
deal with this by treating each queue in isolation for the embedding.

4.1 Embedding
Ultimately, Unicorn models are to be used by the Dragonet network
stack to configure and operate NICs. This requires determining
what NIC hardware functionality is used and how hardware and
software cooperate. We reduce this problem to embedding the PRG
into the LPG. The embedded graph includes PRG and LPG nodes,
but for any label only one node is included. All LPG labels exist in
the embedded graph, and all LPG/PRG dependencies are respected.
To enable for adaptation to the flows of each queue, we perform a
separate embedding for each queue.

Next, we discuss a basic embedding algorithm that tries to
maximize use of PRG nodes, assuming a fully configured NIC.
We start by adding to the embedded graph the desired NIC queue
and all its dependencies, which guarantees that we use as much
of the PRG as possible. Then we iteratively pick nodes from the
set of unembedded LPG nodes (U) so that all their dependencies
are already embedded. If LPG is acyclic (which is currently the
case in our models), then either U is empty or such a node exists.
When the embedded graph is produced, we need to determine a
single point for the software/hardware boundary. We use a node
(SW) to define that point, which we place right after the PRG queue
node. Subsequently, all PRG software nodes are moved beyond this
boundary.

Figure 4 shows the resulting graph’s software nodes when em-
bedding queue Q1 of the PRG shown in Fig. 2 to the LPG shown in
Fig. 1, assuming the SYN filter is disabled. Nodes starting with L
are LPG nodes and nodes starting with P are PRG nodes. If the SYN
filter is disabled, Q1 in the PRG is dominated by a 5-tuple filter for
UDP packets to port 53. Applying the 5-tuple filter constrains to the
two UDP flows in the LPG, reveals that only one flow is assigned
to Q1. Although this is a simple example, we argue that it illustrates
the potential benefits of our proposed PRG/LPG models.

5. Conclusions and Future work
In this paper we presented Unicorn, a language for modeling NICs.
Based on its primitives, we built a model for the i82599 NIC and
discussed how we can manipulate this model for controlling and
reasoning about NIC hardware resources.

We believe that Unicorn is a first step towards implementing a
network stack that can fully exploit modern NICs. There are, how-
ever, many unresolved challenges. Our future work will focus on
implementing: (i) an efficient network stack that can be controlled
by an (incremental and online) embedding of the PRG(s) into the
LPG, and (ii) the corresponding NIC drivers.

References
[1] J. Dean and S. Ghemawat. Mapreduce: simplified data processing

on large clusters. In 6th USENIX Symposium on Operating Systems
Design and Implementation, Dec. 2004.

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Power challenges may end the multicore era. Com-
mun. ACM, 56(2):93–102, Feb. 2013. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/2408776.2408797.

[3] N. C. Hutchinson and L. L. Peterson. The X-Kernel: An architecture
for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1), January 1991. ISSN 0098-5589. . URL http:
//dx.doi.org/10.1109/32.67579.

[4] Intel Corporation. Intel IXP2400/IXP2800 Network Processor Pro-
grammer’s Reference Manual, November 2003.

[5] Intel Corporation. Intel 82599 10 GbE Controller Datasheet, Decem-
ber 2010. Revision 2.6.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2007, EuroSys ’07, pages 59–72, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-636-3. . URL
http://doi.acm.org/10.1145/1272996.1273005.

[7] The OpenCL Specification, Version 1.2. Khronos Group, 2012.
[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The

click modular router. ACM Transactions on Computer Systems, 18(3),
August 2000. ISSN 0734-2071. . URL http://doi.acm.org/10.1145/
354871.354874.

[9] G. Likely and J. Boyer. A symphony of flavours: Using the device
tree to describe embedded hardware. In Proceedings of the Linux
Symposium, volume 2, pages 27–37, 2008.

[10] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a "functional" internet. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, Lisbon, Portugal, 2007. ISBN 978-1-59593-636-3. . URL
http://doi.acm.org/10.1145/1272996.1273009.

[11] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil:
an IDL for hardware programming. In 4th USENIX Symposium on
Operating Systems Design and Implementation, pages 17–30, 2000.

[12] Microsoft Corporation. Information about the TCP chimney offload,
receive side scaling, and network direct memory access features in
windows server 2008. Microsoft Knowledge Base article 951037, http:
//support.microsoft.com/kb/951037, revision 7.0, February 2011.

[13] mle1000-syn. Discussion in the e1000-devel mailing list entitled
‘Configure Rx ntuple filters’. http://article.gmane.org/gmane.linux.
drivers.e1000.devel/10140, June 2012.

[14] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: operating system abstractions to manage GPUs as compute
devices. In 23rd ACM Symposium on Operating Systems Principles,
pages 233–248, 2011. ISBN 978-1-4503-0977-6. . URL http:
//doi.acm.org/10.1145/2043556.2043579.

[15] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. Automatic
device driver synthesis with termite. In 22nd ACM Symposium on
Operating Systems Principles, pages 73–86, Oct. 2009. ISBN 978-1-
60558-752-3. .

[16] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaestle. We need to talk
about NICs. In 14th Workshop on Hot Topics in Operating Systems,
May 2013.

[17] Solarflare Communications, Inc. Solarflare SFN5122F
Dual-Port 10GbE Enterprise Server Adapter, 2010. URL
http://www.solarflare.com/Content/UserFiles/Documents/
Solarflare_SFN5122F_10GbE_Adapter_Brief.pdf.

[18] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and P. Wyckoff.
Tapping into the fountain of CPUs: on operating system support for
programmable devices. In 13th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 179–188, 2008. ISBN 978-1-59593-958-6. .

