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Abstract
A physical memory address is no longer the stable

concept it was. We demonstrate how modern computer
systems from rack-scale to SoCs have multiple physical
address spaces, which overlap and intersect in complex,
dynamic ways, and may be too small to even address
available memory in the near future.

We present a new model of representing and interpret-
ing physical addresses in a machine for the purposes of
memory management, and outline an implementation
of the model in a memory system based on capabilities
which can handle arbitrary translations between physical
address spaces and still globally manage system memory.

Finally, we point out future challenges in managing
physical memory, of which our model and design are
merely a foundation.

1 Introduction

In the good old days, every memory location in a com-
puter that could be addressed by the processor had a
unique address. These addresses were also the size of
machine words, such as 32 and 64 bits. Each processor
had an address translation unit which turned word-sized
virtual addresses into word-sized physical addresses. As
far as the OS was concerned, to manage each core’s MMU
simply required knowing the important physical addresses
(where RAM was, device registers, page table roots, etc.)
and manage this address space accordingly.

We argue that this pastoral ideal is long gone in modern
hardware (if, indeed, it ever existed), and current trends
will render it even more irrelevant to OS design.

Virtual memory support is well-known as a complex
element of both OS design and processor architecture [7,
8], but both rely on key simplifying assumptions about
the underlying physical address space:

1. All RAM, and all memory-mapped I/O registers ap-
pear in a single physical address space.

2. Any processor core (via its MMU) can address any
part of this physical address space at any given time.

3. All processors use the same physical address for a
given memory cell or hardware register.

Unfortunately, none of these comforting assumptions
are true for modern hardware, ranging from rack-scale
systems to systems-on-a-chip (SoCs) in mobile devices.
In the next section, we survey some of the many current
and future violations of these assumptions, and point out
the challenges this creates for effective OS management
of physical memory as a resource.

We then present our response to this situation in two
parts: firstly, an abstract model of physical addressing that
captures the characteristics ignored in current systems,
and secondly a way to implement the model in a real OS
(Barrelfish) using an extended notion of capabilities. We
start by discussing in more detail the growing challenge
posed by modern and future physical addressing.

2 The Problem

Our argument is this: physical memory today violates
the assumptions on which classical memory management
is based. OS designers today face a choice: ignore the
problem, continue with the old Unix-based “cores plus
RAM” view, and have the OS manage the increasingly
small areas of the machine where this old model fits, or
find a better model of physical addressing which allows a
better implementation to solve the problem.

The first observation is that modern machines have
multiple physical address spaces. “Engineered systems”
from vendors like Oracle, Teradata, SAP, and others con-
sist of a collection of commodity PC servers and custom
hardware tightly coupled in a single unit. Such systems
frequently use remote direct memory access (RDMA) to
allow applications to copy data from the RAM of one
computer to that of another [24] without involving the
OS. Scale-out NUMA [21] takes this idea further by inte-
grating an RDMA-like interface into the cache coherency
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Figure 1: Xeon Phi Memory Layout

protocol, dramatically reducing the overhead of remote
reads, writes, and atomic operations while allowing them
to use virtual addresses.

Buffer allocation and correct placement of data is crit-
ical to performance here, but requires global allocation
and protection of multiple physical address spaces.

Secondly, multiple physical address spaces are not
always disjoint, but often intersect. For example, a PC
hosting Xeon Phi accelerators [17] has a conventional
48-bit physical address space1, which includes two PCI
regions corresponding to each Xeon Phi card: one 16 GB
region maps to RAM on the card, while the other, smaller
region holds some of the card’s IO registers (Figure 1).

However, the Xeon Phi cores see a different physical
address space whose size is only 40 bits. The lower half
of this contains the card’s 16 GB RAM region and IO
registers at fixed addresses. The upper half (512 GB) is
divided into 32 separate 16 GB regions, each of which
can be translated independently via a lookup table to
any physical address on the host side (including the PCI
apertures of this and other Xeon Phi cards).

This configuration violates all three assumptions in
our introduction. Memory (including RAM on both the
host and cards) is shared, but addresses are not. An OS
managing RAM across the whole machine (e.g. [1]) can
not use physical addresses to refer to regions of memory,
and needs some other kind of descriptor. Worse, this
hardware permits addressing loops to occur – something
an OS would ideally be able to prevent.

This is just one example. Many PCI devices (GPUs,
NICs, etc.) contain large amounts of on-card memory
forming a separate physical address space and are ca-
pable of issuing bus cycles to host memory. Memory
addresses must already be translated by software between
address spaces, whether it is when copying data directly
or programming DMA engines. It is clear from looking at
OS code that IOMMUs [2] complicate, not simplify, this
problem: they introduce additional address spaces (on the

1Physical addresses on 64-bit x86 processors are limited to 48 bits.

adaptor) and apertures between them and host memory.
Neither is the problem confined to high-end servers.

System-on-chip parts used in phones contain a mix of
heterogeneous cores with differing access to memory and
devices, in effect living in different, though intersecting,
physical address spaces. Such systems are comprised of a
complex network of buses of different widths, with highly
configurable translations and firewalls between them to
facilitate sandboxing of low-level software on some of
the cores. The redacted public programming manuals for
such chips list multiple physical addresses for the same
location, depending on which core is initiating the bus
cycle (for example, [29]).

Even a low-end PC has multiple physical address
spaces: every core (or, indeed, SMT thread) has its own
memory-mapped local interrupt controller. We return to
this simple example in the next section.

Finally, we are running out of bits. It is not unreason-
able today to envisage a machine with a petabyte of main
memory, and such scales are within scope of projects
like The Machine [11, 15]. Note that a 64-bit PC today
can only physically address 256 TB. In practice, many of
these address bits tend to be used to route memory trans-
actions to the appropriate part of the machine, further
reducing the addressable memory.

Additional address bits could in principle be added, as
was the case with Intel’s PAE [16] and ARM’s LPAE [4],
but this incurs significant electrical cost in wires (and
hence power), TCAM for cache lookup, etc. Furthermore,
others have questioned whether conventional paging is
workable at this scale at all [5, 30].

A more likely course for hardware designers is addi-
tional layers of physical address translation, such as that
adopted for the (32-bit) Intel Single-Chip Cloud Com-
puter [13, 14], which used a 256-entry per-core lookup
table to translate each core’s 32-bit physical addresses
into 43-bit system-wide addresses.

We see three key implications of these trends:
• There will be more memory locations in a machine

than a core can issue physical addresses for.
• There will be multiple translation steps of physical

addresses between a core and memory it accesses.
• To access a memory cell, different cores in a machine

must issue different physical addresses.
Virtual memory is no solution to this problem. Clas-

sical VM provides a per-process, opaque translation to a
single physical AS, which is assumed to be the same for
all cores. This is simply not the case for current and future
machines. VM is just an additional level of translation,
but solves none of the problems of address space size,
intersection, or partial accessibility.

Instead, key OS design challenges, viewed as trivial for
the last few decades (because they were), are raised anew:

1. How does an OS allocate, manage, and share regions
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of physical addresses (whether DRAM, persistent
RAM, or memory-mapped I/O registers)?

2. How does OS code running on one core communi-
cate a set of memory locations (such as a buffer) to
code running on another core?

3. How can application code running on multiple cores
use a single, shared virtual address space? To what
extent is this guaranteed to be possible?

Our goal in the work reported in the rest of this paper is
twofold: Firstly, we want to find workable OS design and
implementation techniques to deal with hardware that has
no single, global view of physical memory. As we have
said, we are impelled to do this by trends in hardware
design which are manifest in today’s hardware, and which
we see continuing into the future.

Secondly, however, in the spirit of Mogul et. al. [20]
we do not want to be simply beholden to the hardware de-
signers as in the past. We also realize that these hardware
trends are happening for a reason, and by understanding
their consequences for system software we hope to offer
useful guidance and insight from a software perspective
to hardware designers.

3 A better model for memory addressing

In this section, we present an abstract model for repre-
senting what a given physical address actually means in a
machine. Our goal is to provide a logically firm founda-
tion for designing a physical memory management system
for complex modern machines.

Our representation is reminiscent of Device Trees [22],
however we focus on the translation of physical addresses
within a system, and within this narrower scope must
accomodate non-hierarchical relationships (in particular,
different cores and devices see different addresses for the
same location).

We face a classic naming problem. Indeed, Saltzer’s
seminal paper [26] on naming and binding of objects
takes memory addressing in Multics [9] as one of its
two case-studies (the other, better-known example is the
file system). As with all naming problems, we pay care-
ful attention to defining the context in which each name
(physical address in our case) is to be resolved.

Our approach is to start by identifying every distinct
naming context in the system. We first define a Physical
Address Space, shortened to Address Space (AS). Each
AS has a unique ID, a range of address values (typically
a power of two in size), and a function from addresses
to referents. A referent is either memory contents which
can only be directly addressed in this AS, or else a new
address in a different AS. An AS is partitioned into con-
tiguous regions. Each region either contains only local
referents (which can be RAM, memory-mapped hardware

registers, or nothing at all), or is a function mapping ad-
dresses in its range into addresses in a different region
of a different AS – in effect, the region is an “aperture”
into another address space, with an associated translation
function on addresses.

This translation function between regions in ASes
might be an identity mapping (where a region in one AS
shadows another), a simple static transformation (such as
adding an offset or prepending bits), or dynamic transla-
tion using hardware like a lookup table or IOMMU.

We further enforce the rule that any “real” location (a
RAM cell, or a hardware register) appears in exactly one
AS. If such a location seems to be present locally in more
than one AS, say ASes x and y, then we create a new AS
z to contain it locally and replace the respective regions
of x and y with mappings to z. This leads to more unique
ASes than are considered by traditional approaches.

To summarize so far, a physical address is always rel-
ative to some AS, and resolves either to a unique, real
location, or to other address in a different AS.

We next use the term core to refer to anything capable
of issuing addresses: a processor core (or SMT thread),
co-processor, or DMA-capable device. A core issues
physical addresses to its own unique AS. This AS is local:
even SMT threads on a PC “see” different ASes with
different, memory-mapped local interrupt controllers.

When a core issues an address, it is progressively trans-
lated through successive address spaces until it hits a local
referent in some AS, or else an error occurs. This process
is not guaranteed to terminate – it is perfectly possible to
set up routing loops inside a modern machine. In practice,
this usually leads to a bus error.

A complete computer system is represented as an ar-
rangement of cores and physical address spaces. Note
that not all address spaces can be directly addressed by
cores, and not all have actual contents – a novelty of our
model is that many ASes serve purely to cleanly separate
intermediate translation steps.

An example will help to make this clear. Figure 2
shows a decomposition of a simple, 2-core 64-bit PC
with a 32-bit DMA capable network card. Even this
small example (common 10 years ago) demonstrates the
complexity of modern memory addressing. We model
this system with three cores (two CPUs and a NIC), and
four address spaces: one for each core and a host address
space. RAM regions are local to the host address space,
and identity-mapped to all other address spaces. Because
the NIC is constrained to 32-bit addresses, it is incapable
of accessing the RAM region with addresses above 4G
in the system AS. The NIC’s memory-mapped IO region
(mmio) is local to the NIC’s address space and exported
to the host. Finally, each CPU mirrors the host address
space and includes a local region for its local APIC.

Note Figure 1 is also an example of the model, omitting
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Figure 2: Address spaces in a simplified 2-core 64-bit PC with a 32-bit PCI network card with DMA.

8 host ASes (for a 4-core, 2-thread host) and 228 distinct
Xeon Phi ASes (for a 57-core, 4-thread Xeon Phi).

Discussion: The principle that memory contents can
only be “directly” accessed in a single, unique AS allows
us to decompose a system into separate but connected
ASes which translate addresses between themselves with
well-defined behavior we can represent logically, config-
ure online in an OS, and reason about.

We find our model leads to an increase in the number
of conceptual ASes in a given real system, but not an
explosion. For example, each core (or SMT thread) only
introduces a single new AS. Even complex SoCs result in
AS counts in the middle tens, rather than hundreds.

4 Implementation

We are not theoreticians. Our goal in devising a memory
addressing model is to create a memory system for the
Barrelfish OS [6] to capture the complexity of modern
hardware and meet the challenges we mention above.

Representing a region in our model (a range of ad-
dresses and an associated AS identifier) is natural match
for descriptors or, more generally, capabilities [12,19,28].
Capabilities allow us to refer to, and subdivide, any region
of physical memory even when it cannot be mapped into
a local virtual address space.

Barrelfish already represents physical memory regions
using typed capabilities in a scheme extended from
seL4 [18], but the representation also resembles Mach’s
memory objects [23] or Chorus segments [25]. One could
even use POSIX file descriptors (and mmap()) for this
purpose, while losing the scaling benefits of decentralized
allocation afforded by full capabilities.

We extend Barrelfish’s capabilities in a straighforward
manner by adding a new field holding an identifier for
the AS of the region referred to by the capability. The
key implementation challenges concern how to access the
memory referred to by a capability, revocation of rights
to a region, and passing capabilities between cores.

Capability resolution: In Barrelfish and similar sys-
tems which represent physical memory with capabili-
ties [12, 18, 28], a capability of the appropriate type con-
fers the right to map the region into a virtual address space.
In our new design we only allow this if the capability’s
AS is local to the core requesting the mapping. DMA
programming is restricted in an analogous way.

If the region’s AS is different from the core’s, it must
be resolved : a new derived capability must be created
which represents a region of the local AS mapping to the
remote region. There are three possibilities:

1. The translation is impossible. For example, a region
referring to an RDMA buffer on a remote node in
an Infiniband cluster cannot be translated to a local
memory region. In this case, resolution fails. Note
that holding a capability is still useful: this allows
authorization for, and decentralized allocation of,
remote buffer memory, for example.

2. A static translation exists. In this case the non-local
region can always be trivially translated to a local
region via a static function, and a new (local) capa-
bility can be created. In many cases this function is
the identity (for example, when a local AS is mostly
“shadowed” by a system-wide AS) or is a trivial op-
eration (such as extending a 32-bit address in low
memory to a local 64-bit address, or adding the ad-
dress of a PCI Base register).

3. The region can be translated dynamically. This typi-
cally involves programming some translation hard-
ware, such as a lookup table or an IOMMU.

The last case is the most complex to handle because
hardware programming is involved, and a general solution
is still an open design question for us.

One challenge is what action to take when required
hardware resources (e.g lookup table or IOMMU entries)
become exhausted. An option is to use translation faults
and view hardware as a cache for a larger set of software-
maintained translations, much as a TLB caches virtual
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mappings, but the complexity and performance anomalies
introduced by this approach make it unappealing.

A second challenge is what to do when the hardware
resources required to resolve a capability are not acces-
sible from the core itself. In the worst case, resolving a
capability to a remote region of memory might require
a complete map of the machine’s memory system, and
remote requests to other nodes in the system to poke
translation hardware.

The former problem we can address using Barrelfish’s
centralized System Knowledge Base (SKB) [27] to main-
tain the full memory map (suitably cached), but remote
translation requests introduce undesirable coupling be-
tween distributed parts of the OS which is known to have
caused considerable difficulty in previous systems.

A simplifying assumption we are currently experiment-
ing with is the restriction that a capability can only be
resolved if the hardware resources required are local to
the resolving core. This reduces the complexity consid-
erably, at the cost of limited semantics: it is possible for
situations to arise where resolution is unnecessarily for-
bidden. This can be mitigated by transferring unresolved
versions of capabilities between nodes when possible, but
more experience with a real system is required.

Revocation: Revoking a capability implies deletion of
all capabilities derived from it – in effect, invalidating all
mentions of the region referred to by the capability.

Barrelfish’s capability system already provides revo-
cation with semantics that are identical to seL4’s revoca-
tion [10]. For example, any memory regions that are de-
rived from a memory region R need to be deleted when R
is revoked. Furthermore, since Barrelfish is a multikernel
and the capability system is distributed (and replicated)
across cores, the revocation mechanism already handles
the distributed 2-phase commit required to remove all
copies of a capability.

We extend this facility to track all capabilities resolved
from the one being revoked. Tracking a chain of resolu-
tions is straightforward for static translations. However,
deleting capabilities that were the result of dynamic reso-
lution requires reprogramming of the translation hardware
to remove the established translation mappings. To ensure
that this reprogramming happens, we make it a part of the
capability deletion process. Note that only allowing local
hardware to be programmed in the resolution process also
simplifies revocation.

5 Conclusion and future work

Physical address space is not what it used to be. A clear
and consistent scheme for naming and working with phys-
ical addresses in a modern machine is a surprisingly com-
plex, but urgent, problem.

Our current work aims at a sound foundation for phys-
ical memory management and targets rack-scale appli-
ances using RDMA, server-based SoCs like X-Gene [3]
and accelerators like Xeon Phi. Consequently, we started
by trying to capture the true complexity of physical mem-
ory in the design of a modern OS.

We also plan to evaluate our model using data process-
ing applications running on The Machine [15], equipped
with large amounts of non-volatile memory which is orga-
nized and addressed in different physical address spaces
across many compute nodes. Another possible evaluation
scenario is offloading and communication between the
Xeon Phi co-processor and the host system.

However, this is only the first step. Large-scale plat-
forms like The Machine [15] present an entirely new set
of challenges that accompany persistent main memories
and highly distributed architectures. One is reliability.
Interconnects and memory will suffer partial and/or tran-
sient failures, and systems must adapt when erroneous
data is retrieved remotely, or accesses simply fail.

The second is security. The principle of including the
kernel on every core in the Trusted Computing Base may
be insufficient at scale. Even today, mobile SoCs provide
configurable firewalls on their interconnects to protect
cores running critical code. The memory system on the
experimental Intel SCC [13] could be programmed to
completely sequester cores running in kernel mode.

Third, energy consumption is increasingly the major
limiting factor in computing. Consequently, the OS must
take power into consideration to effectively manage mem-
ories in large, high-density machines.

Finally, this is a physical and not (yet) a virtual mem-
ory system, though it may extend naturally to the extra,
per-process translation layer provided by MMUs. How-
ever, a better question is whether virtual memory in its
current form is still a useful concept. Per-process address
translation and interposition on memory accesses to a
given region are powerful facilities with many uses, but
demand paging has questionable value in a world of very
large persistent main memory.

The transparency of virtual memory is already an ob-
stacle to performance: critical applications avoid paging
and size data structures to fit TLB coverage, effectively
second-guessing the MMU. In contrast, our approach in
Barrelfish directly manages physical memory, and appli-
cations control their own virtual address spaces.

In any case, a prerequisite to addressing any of these
problems is a clear basis for unambiguously referring to
physical memory resources, and allowing an OS to reason
about and control their location and accessibility from
various parts of the system. It may also point the way
towards hardware designs which mitigate the challenges
we have outlined in this paper.
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